dc.creatorVignat, Christophe
dc.creatorPlastino, Ángel Luis
dc.date2007
dc.date2022-02-07T14:49:43Z
dc.date.accessioned2023-07-15T04:17:57Z
dc.date.available2023-07-15T04:17:57Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/130601
dc.identifierissn:0375-9601
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7469014
dc.descriptionWe advance scale-invariance arguments for systems that are governed (or approximated) by a q-Gaussian distribution, i.e., a power law distribution with exponent Q = 1 / ( 1 − q ) ; q ∈ R . The ensuing line of reasoning is then compared with that applying for Gaussian distributions, with emphasis on dimensional considerations. In particular, a Gaussian system may be part of a larger system that is not Gaussian, but, if the larger system is spherically invariant, then it is necessarily Gaussian again. We show that this result extends to q-Gaussian systems via elliptic invariance. The problem of estimating the appropriate value for the Tsallis' parameter q is revisited. A kinetic application is also provided.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format370-375
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsCreative Commons Attribution 4.0 International (CC BY 4.0)
dc.subjectFísica
dc.subjectScale invariance
dc.subjectElliptical invariance
dc.subjectq-Gaussian distributions
dc.subjectSuper-statistics
dc.titleScale invariance and related properties of q-Gaussian systems
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución