dc.creatorPlastino, Ángel Luis
dc.creatorRocca, Mario Carlos
dc.date2015
dc.date2021-12-15T14:36:02Z
dc.date.accessioned2023-07-15T04:16:41Z
dc.date.available2023-07-15T04:16:41Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/129627
dc.identifierissn:0378-4371
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7468934
dc.descriptionThere are two kinds of Tsallis-probability distributions: heavy tail ones and compact support distributions. We show here, by appeal to functional analysis’ tools, that for lower bound Hamiltonians, the second variation’s analysis of the entropic functional guarantees that the heavy tail q -distribution constitutes a maximum of Tsallis’ entropy. On the other hand, in the compact support instance, a case by case analysis is necessary in order to tackle the issue.
dc.descriptionInstituto de Física La Plata
dc.formatapplication/pdf
dc.format572-581
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectFísica
dc.subjectMaxEnt
dc.subjectSecond variation
dc.subjectGeneralized statistics
dc.titleMaxEnt, second variation, and generalized statistics
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución