dc.creatorAlcón, Liliana Graciela
dc.creatorGravier, Sylvain
dc.creatorLinhares Sales, Cláudia
dc.creatorProtti, Fábio
dc.creatorRavenna, Gabriela Susana
dc.date2020-01-28
dc.date2021-12-01T18:31:22Z
dc.date.accessioned2023-07-15T04:07:29Z
dc.date.available2023-07-15T04:07:29Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/129017
dc.identifierissn:0364-9024
dc.identifierissn:1097-0118
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7468344
dc.descriptionThe clique graph K(G) of G is the intersection graph of the family of maximal cliques of G. For a family F of graphs, the family of clique-inverse graphs of F, denoted by K−1(F), is defined as K−1(F) = {H|K(H) ∈ F}. Let F p be the family of Kp-free graphs, that is, graphs with clique number at most p − 1, for an integer constant p ≥ 2. Deciding whether a graph H is a clique-inverse graph of F p can be done in polynomial time; in addition, for p ∈ {2, 3, 4}, K − 1 (Fp) can be characterized by a finite family of forbidden induced subgraphs. In Protti and Szwarcfiter, the authors propose to extend such characterizations to higher values of p. Then a natural question arises: Is there a characterization of K − 1 (Fp) by means of a finite family of forbidden induced subgraphs, for any p ≥ 2? In this note we give a positive answer to this question. We present upper bounds for the order, the clique number, and the stability number of every forbidden induced subgraph for K − 1 (Fp) in terms of p.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format531-538
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.subjectMatemática
dc.subjectclique graph
dc.subjectclique-inverse graph
dc.titleOn clique‐inverse graphs of graphs with bounded clique number
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución