dc.creatorDurán, Ricardo Guillermo
dc.creatorMuschietti, María Amelia
dc.creatorRuss, Emmanuel
dc.creatorTchamitchian, Philippe
dc.date2010
dc.date2021-11-05T15:01:45Z
dc.date.accessioned2023-07-15T04:03:08Z
dc.date.available2023-07-15T04:03:08Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/127817
dc.identifierissn:1747-6933
dc.identifierissn:1747-6941
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7468066
dc.descriptionLet Ω be an arbitrary bounded domain of ℝⁿ . We study the right invertibility of the divergence on Ω in weighted Lebesgue and Sobolev spaces on Ω, and rely this invertibility to a geometric characterization of Ω and to weighted Poincare inequalities on Ω. We recover, in particular, well-known results on the right invertibility of the divergence in Sobolev spaces when Ω is Lipschitz or, more generally, when Ω is a John domain, and focus on the case of s-John domains.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format795-816
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectCiencias Exactas
dc.subjectMatemática
dc.subjectdivergence
dc.subjectPoincaré inequalities
dc.subjectgeodesic distance
dc.titleDivergence operator and Poincaré inequalities on arbitrary bounded domains
dc.typeArticulo
dc.typePreprint


Este ítem pertenece a la siguiente institución