dc.creator | Durán, Ricardo Guillermo | |
dc.creator | Muschietti, María Amelia | |
dc.creator | Russ, Emmanuel | |
dc.creator | Tchamitchian, Philippe | |
dc.date | 2010 | |
dc.date | 2021-11-05T15:01:45Z | |
dc.date.accessioned | 2023-07-15T04:03:08Z | |
dc.date.available | 2023-07-15T04:03:08Z | |
dc.identifier | http://sedici.unlp.edu.ar/handle/10915/127817 | |
dc.identifier | issn:1747-6933 | |
dc.identifier | issn:1747-6941 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/7468066 | |
dc.description | Let Ω be an arbitrary bounded domain of ℝⁿ . We study the right invertibility of the divergence on Ω in weighted Lebesgue and Sobolev spaces on Ω, and rely this invertibility to a geometric characterization of Ω and to weighted Poincare inequalities on Ω. We recover, in particular, well-known results on the right invertibility of the divergence in Sobolev spaces when Ω is Lipschitz or, more generally, when Ω is a John domain, and focus on the case of s-John domains. | |
dc.description | Facultad de Ciencias Exactas | |
dc.format | application/pdf | |
dc.format | 795-816 | |
dc.language | en | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
dc.subject | Ciencias Exactas | |
dc.subject | Matemática | |
dc.subject | divergence | |
dc.subject | Poincaré inequalities | |
dc.subject | geodesic distance | |
dc.title | Divergence operator and Poincaré inequalities on arbitrary bounded domains | |
dc.type | Articulo | |
dc.type | Preprint | |