dc.creatorMaestripieri, Alejandra Laura
dc.creatorMartínez Pería, Francisco Dardo
dc.date2007-06-27
dc.date2021-10-21T19:22:07Z
dc.date.accessioned2023-07-15T03:49:17Z
dc.date.available2023-07-15T03:49:17Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/127101
dc.identifierissn:0378-620x
dc.identifierissn:1420-8989
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7467181
dc.descriptionThe aim of this work is to generalize the notions of Schur complements and shorted operators to Krein spaces. Given a (bounded) J-selfadjoint operator A (with the unique factorization property) acting on a Krein space H and a suitable closed subspace S of H, the Schur complement A/[S] of A to S is defined. The basic properties of A/[S] are developed and different characterizations are given, most of them resembling those of the shorted of (bounded) positive operators on a Hilbert space
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format207-221
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectMatemática
dc.subjectCombinatorics
dc.subjectSpace (mathematics)
dc.subjectAlgebra
dc.subjectUnique factorization domain
dc.subjectSchur complement
dc.subjectSubspace topology
dc.subjectMathematics
dc.subjectBounded function
dc.subjectHilbert space
dc.subjectOperator (computer programming)
dc.titleSchur Complements in Krein Spaces
dc.typeArticulo
dc.typePreprint


Este ítem pertenece a la siguiente institución