dc.creator | Maestripieri, Alejandra Laura | |
dc.creator | Martínez Pería, Francisco Dardo | |
dc.date | 2007-06-27 | |
dc.date | 2021-10-21T19:22:07Z | |
dc.date.accessioned | 2023-07-15T03:49:17Z | |
dc.date.available | 2023-07-15T03:49:17Z | |
dc.identifier | http://sedici.unlp.edu.ar/handle/10915/127101 | |
dc.identifier | issn:0378-620x | |
dc.identifier | issn:1420-8989 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/7467181 | |
dc.description | The aim of this work is to generalize the notions of Schur complements and shorted operators to Krein spaces. Given a (bounded) J-selfadjoint operator A (with the unique factorization property) acting on a Krein space H and a suitable closed subspace S of H, the Schur complement A/[S] of A to S is defined. The basic properties of A/[S] are developed and different characterizations are given, most of them resembling those of the shorted of (bounded) positive operators on a Hilbert space | |
dc.description | Facultad de Ciencias Exactas | |
dc.format | application/pdf | |
dc.format | 207-221 | |
dc.language | en | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
dc.subject | Matemática | |
dc.subject | Combinatorics | |
dc.subject | Space (mathematics) | |
dc.subject | Algebra | |
dc.subject | Unique factorization domain | |
dc.subject | Schur complement | |
dc.subject | Subspace topology | |
dc.subject | Mathematics | |
dc.subject | Bounded function | |
dc.subject | Hilbert space | |
dc.subject | Operator (computer programming) | |
dc.title | Schur Complements in Krein Spaces | |
dc.type | Articulo | |
dc.type | Preprint | |