dc.creatorZarragoicoechea, Guillermo Jorge
dc.creatorPugnaloni, Luis A.
dc.creatorLado, Fred
dc.creatorLomba, Enrique
dc.creatorVericat, Fernando
dc.date2005-03-18
dc.date2021-10-01T13:20:09Z
dc.date.accessioned2023-07-15T03:33:36Z
dc.date.available2023-07-15T03:33:36Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/126013
dc.identifierissn:1539-3755
dc.identifierissn:1550-2376
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7466172
dc.descriptionWe consider the clustering and percolation of continuum systems whose particles interact via the Lennard-Jones pair potential. A cluster definition is used according to which two particles are considered directly connected (bonded) at time t if they remain within a distance d, the connectivity distance, during at least a time of duration tau, the residence time. An integral equation for the corresponding pair connectedness function, recently proposed by two of the authors [Phys. Rev. E 61, R6067 (2000)], is solved using the orthogonal polynomial approach developed by another of the authors [Phys. Rev. E 55, 426 (1997)]. We compare our results with those obtained by molecular dynamics simulations.
dc.descriptionInstituto de Física de Líquidos y Sistemas Biológicos
dc.descriptionGrupo de Aplicaciones Matemáticas y Estadísticas de la Facultad de Ingeniería
dc.formatapplication/pdf
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectFísica
dc.subjectCluster (physics)
dc.subjectMathematical analysis
dc.subjectPercolation
dc.subjectSocial connectedness
dc.subjectIntegral equation
dc.subjectPair potential
dc.subjectResidence time (statistics)
dc.subjectMathematics
dc.subjectFunction (mathematics)
dc.subjectContinuum (topology)
dc.titlePercolation of clusters with a residence time in the bond definition: Integral equation theory
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución