dc.creatorRebollo Neira, Laura
dc.creatorPlastino, Ángel Luis
dc.date2002
dc.date2021-09-30T13:25:08Z
dc.date.accessioned2023-07-15T03:31:08Z
dc.date.available2023-07-15T03:31:08Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/125907
dc.identifierissn:1063-651X
dc.identifierissn:1095-3787
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7466018
dc.descriptionA recursive approach for computing the q = 1/2 nonextensive maximum entropy distribution of the previously introduced formalism for data subset selection is proposed. Such an approach is based on an iterative biorthogonalization technique, which allows for the incorporation of the Lagrange multipliers that determine the distribution to the workings of the algorithm devised for selecting relevant data subsets. This technique circumvents the necessity of inverting operators and yields a recursive procedure to appropriately modify the Lagrange multipliers so as to account for each new constraint.
dc.descriptionInstituto de Física La Plata
dc.formatapplication/pdf
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectFísica
dc.subjectJoint entropy
dc.subjectAlgorithm
dc.subjectMathematical optimization
dc.subjectMathematics
dc.subjectJoint quantum entropy
dc.subjectBinary entropy function
dc.subjectMaximum entropy thermodynamics
dc.subjectMaximum entropy probability distribution
dc.subjectLagrange multiplier
dc.subjectMaximum entropy spectral estimation
dc.subjectPrinciple of maximum entropy
dc.titleRecursive approach for constructing the q = 1/2 maximum entropy distribution from redundant data
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución