dc.creatorFunes, Ana
dc.creatorRamírez-Quintana, María José
dc.creatorHernández-Orallo, Jose
dc.creatorFerri, Cèsar
dc.date2011-08
dc.date2011
dc.date2021-09-21T14:14:48Z
dc.date.accessioned2023-07-15T03:26:19Z
dc.date.available2023-07-15T03:26:19Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/125251
dc.identifierissn:1850-2784
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7465712
dc.descriptionIn this work, we present an instantiation of our framework for Hierarchical Distance-based Conceptual Clustering (HDCC) using sequences, a particular kind of structured data. We analyze the relationship between distances and generalization operators for sequences in the context of HDCC. HDCC is a general approach to conceptual clustering that extends the traditional algorithm for hierarchical clustering by producing conceptual generalizations of the discovered clusters. Since the approach is general, it allows combining the flexibility of changing distances for different data types at the same time that we take advantage of the interpretability offered by the obtained concepts, which is central for descriptive data mining tasks. We propose here different generalization operators for sequences and analyze how they work together with the edit and linkage distances in HDCC. This analysis is carried out based on three different properties for generalization operators and three different levels of agreement between the clustering hierarchy obtained from the linkage distance and the hierarchy obtained by using generalization operators.
dc.descriptionSociedad Argentina de Informática e Investigación Operativa
dc.formatapplication/pdf
dc.format128-139
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectCiencias Informáticas
dc.subjectconceptual clustering
dc.subjectdistance based clustering
dc.subjectLinked lists
dc.subjectsequences
dc.subjectedit distance
dc.titleAn instantiation for sequences of hierarchical distance-based conceptual clustering
dc.typeObjeto de conferencia
dc.typeObjeto de conferencia


Este ítem pertenece a la siguiente institución