dc.creatorFalomir, Horacio Alberto
dc.creatorLiniado, Joaquín
dc.creatorGonzález Pisani, Pablo Andrés
dc.date2020
dc.date2021-09-10T12:49:14Z
dc.date.accessioned2023-07-15T03:10:33Z
dc.date.available2023-07-15T03:10:33Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/124581
dc.identifierissn:1751-8113
dc.identifierissn:1751-8121
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7464724
dc.descriptionTo motivate our discussion, we consider a 1+1 dimensional scalar field interacting with a static Coulomb-type background, so that the spectrum of quantum fluctuations is given by a second-order differential operator on a single coordinate r with a singular coefficient proportional to 1/r. We find that the spectral functions of this operator present an interesting behavior: the zeta function has multiple poles in the complex plane; accordingly, logarithms of the proper time appear in the heat-trace expansion. As a consequence, the ζ function does not provide a finite regularization of the effective action. This work extends similar results previously derived in the context of conical singularities.
dc.descriptionInstituto de Física La Plata
dc.formatapplication/pdf
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectFísica
dc.subjectScalar field
dc.subjectEffective action
dc.subjectPhysics
dc.subjectGravitational singularity
dc.subjectOperator (physics)
dc.subjectSpectrum (functional analysis)
dc.subjectComplex plane
dc.subjectRiemann zeta function
dc.subjectMathematical physics
dc.subjectDifferential operator
dc.subjectRegularization (physics)
dc.subjectProper time
dc.titleA New Example of the Effects of a Singular Background on the Zeta Function
dc.typeArticulo
dc.typePreprint


Este ítem pertenece a la siguiente institución