dc.creatorAlcón, Liliana Graciela
dc.creatorGutiérrez, Marisa
dc.creatorHernando, Carmen
dc.creatorMora, Mercè
dc.creatorPelayo, Ignacio M.
dc.date2020
dc.date2021-09-16T17:02:15Z
dc.date.accessioned2023-07-15T03:09:37Z
dc.date.available2023-07-15T03:09:37Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/124999
dc.identifierissn:0304-3975
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7464665
dc.descriptionA k-coloring of a graph G is a k-partition II = { S1 , … , Sk } of V (G) into independent sets, called colors. A k-coloring is called neighbor-locating if for every pair of vertices u , v belonging to the same color S i , the set of colors of the neighborhood of u is different from the set of colors of the neighborhood of v. The neighbor-locating chromatic number X N L (G) is the minimum cardinality of a neighbor-locating coloring of G. We establish some tight bounds for the neighbor-locating chromatic number of a graph, in terms of its order, maximum degree and independence number. We determine all connected graphs of order n ≥ 5 with neighbor-locating chromatic number n or n − 1 . We examine the neighbor-locating chromatic number for two graph operations: join and disjoint union, and also for two graph families: split graphs and Mycielski graphs.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format144-155
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectMatemática
dc.subjectColoring
dc.subjectDomination
dc.subjectLocation
dc.subjectVertex partition
dc.subjectNeighbor-locating coloring
dc.titleNeighbor-locating colorings in graphs
dc.typeArticulo
dc.typePreprint


Este ítem pertenece a la siguiente institución