dc.creatorArgerami, Martín
dc.creatorFarenick, Douglas
dc.date2003
dc.date2021-08-30T17:59:14Z
dc.date.accessioned2023-07-15T02:53:07Z
dc.date.available2023-07-15T02:53:07Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/123768
dc.identifierissn:0025-5831
dc.identifierissn:1432-1807
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7463638
dc.descriptionIf a and b are trace-class operators, and if u is a partial isometry, then , where ∥⋅∥1 denotes the norm in the trace class. The present paper characterises the cases of equality in this Young inequality, and the characterisation is examined in the context of both the operator and the Hilbert–Schmidt forms of Young's inequality.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format727-744
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectMatemática
dc.subjectOperator inequalities
dc.subjectNorms of matrices
dc.subjectNumerical range
dc.titleYoung's inequality in trace-class operators
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución