dc.creatorCortiñas, Guillermo Horacio
dc.creatorGeller, Susan C.
dc.creatorWeibel, Charles A.
dc.date1998
dc.date2021-08-26T17:44:04Z
dc.date.accessioned2023-07-15T02:45:26Z
dc.date.available2023-07-15T02:45:26Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/123578
dc.identifierissn:0025-5874
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7463159
dc.descriptionWe propose an Artinian version of Berger's Conjecture for curves, concerning the module of K\"ahler differentials of an algebra. Our version implies Berger's Conjecture in characteristic 0. We establish our Artinian Berger Conjecture in a number of cases, and prove that Berger's Conjecture holds for curve singularities whose conductor ideal contains the cube of a maximal ideal.
dc.descriptionDepartamento de Matemática
dc.formatapplication/pdf
dc.format569-588
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectMatemática
dc.subjectMaximal ideal
dc.subjectIdeal (ring theory)
dc.subjectGravitational singularity
dc.subjectCollatz conjecture
dc.subjectAlgebra over a field
dc.subjectPure mathematics
dc.subjectConjecture
dc.subjectMathematics
dc.subjectBeal's conjecture
dc.subjectCube (algebra)
dc.titleThe Artinian Berger Conjecture
dc.typeArticulo
dc.typePreprint


Este ítem pertenece a la siguiente institución