dc.creatorPlastino, Ángel Ricardo
dc.creatorPlastino, Ángel Luis
dc.date1999-03
dc.date2021-08-18T14:57:49Z
dc.date.accessioned2023-07-15T02:42:48Z
dc.date.available2023-07-15T02:42:48Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/122873
dc.identifierissn:0103-9733
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7462994
dc.descriptionWe revisit Tsallis Maximum Entropy Solutions to the Vlasov-Poisson Equation describing gravitational N-body systems. We review their main characteristics and discuss their relationship with other applications of Tsallis statistics to systems with long range interactions. In the following considerations we shall be dealing witha D-dimensional space so as to be in a position to investigate possible dimensional dependences of Tsallis' parameter q. The particular and important case of the Schuster solution is studied in detail, and the pertinent Tsallis parameter q is given as a function of the space dimension. In the special case of three dimensional space we recover the value q = 7/9, that has already appeared in many applications of Tsallis' formalism involving long range forces.
dc.descriptionFacultad de Ciencias Astronómicas y Geofísicas
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format79-90
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsCreative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.subjectFísica
dc.subjectAstronomía
dc.subjectPoisson distribution
dc.subjectSpecial case
dc.subjectTsallis entropy
dc.subjectPhysics
dc.subjectStatistical physics
dc.subjectGravitation
dc.subjectThree-dimensional space
dc.subjectTsallis statistics
dc.subjectSpace dimension
dc.subjectPrinciple of maximum entropy
dc.subjectThermodynamics
dc.titleTsallis entropy and the Vlasov-Poisson equations
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución