dc.creatorPlastino, Ángel Luis
dc.creatorRocca, Mario Carlos
dc.creatorMonteoliva, Diana
dc.creatorHernando, Alberto
dc.date2021
dc.date2021-05-27T14:50:49Z
dc.date.accessioned2023-07-15T01:50:20Z
dc.date.available2023-07-15T01:50:20Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/119316
dc.identifierissn:2153-120X
dc.identifierissn:2153-1196
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7459786
dc.descriptionIn many interesting physical examples, the partition function is divergent, as first pointed out in 1924 by Fermi (for the hydrogen-atom case). Thus, the usual toolbox of statistical mechanics becomes unavailable, notwithstanding the well-known fact that the pertinent system may appear to be in a thermal steady state. We tackle and overcome these difficulties hereby appeal to firmly established but not too well-known mathematical recipes and obtain finite values for a typical divergent partition function, that of a Brownian particle in an external field. This allows not only for calculating thermodynamic observables of interest, but for also instantiating other kinds of statistical mechanics’ novelties.
dc.descriptionInstituto de Física La Plata
dc.formatapplication/pdf
dc.format82-90
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsCreative Commons Attribution 4.0 International (CC BY 4.0)
dc.subjectFísica
dc.subjectDivergent Partition Functions
dc.subjectStatistical Mechanics
dc.subjectFisher Information
dc.titleBrownian Motion in an External Field Revisited
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución