dc.creatorPennini, Flavia
dc.creatorPlastino, Ángel Luis
dc.creatorPlastino, Ángel Ricardo
dc.creatorHernando, Alberto
dc.date2020
dc.date2021-05-17T18:13:04Z
dc.date.accessioned2023-07-15T01:44:34Z
dc.date.available2023-07-15T01:44:34Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/118929
dc.identifierissn:1099-4300
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7459417
dc.descriptionThis paper deals primarily with relatively novel thermal quantifiers called disequilibrium and statistical complexity, whose role is growing in different disciplines of physics and other sciences. These quantifiers are called L. Ruiz, Mancini, and Calvet (LMC) quantifiers, following the initials of the three authors who advanced them. We wish to establish information-theoretical bridges between LMC structural quantifiers and (1) Thermal Heisenberg uncertainties DxDp (at temperature T); (2) A nuclear physics fermion model. Having achieved such purposes, we determine to what an extent our bridges can be extended to both the semi-classical and classical realms. In addition, we find a strict bound relating a special LMC structural quantifier to quantum uncertainties.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsCreative Commons Attribution 4.0 International (CC BY 4.0)
dc.subjectFísica
dc.subjectThermal uncertainties
dc.subjectDisequilibrium
dc.subjectSemi-classical distributions
dc.titleStructural Statistical Quantifiers and Thermal Features of Quantum Systems
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución