Tesis
Alguns resultados no estudo de férmions e bósons em espaços curvos: soluções das equações de Dirac e Klein-Gordon
Autor
Santos, Luis Cesar Nunes dos
Institución
Resumen
Tese (doutorado) - Universidade Federal de Santa Catarina, Centro de Ciências Físicas e Matemáticas, Programa de Pós-Graduação em Física, Florianópolis, 2015. Neste trabalho efetuamos um estudo das soluções de equações de onda em espaços curvos. Abordamos a formulação das equações de Dirac e Klein-Gordon em uma geometria arbitrária. Como resultado, encontramos uma solução analítica para equação de Klein-Gordon no espaço tempo de uma corda cósmica. Na sequência resolvemos a equação de Dirac em 1+1 dimensões em um referencial acelerado para duas situações de interesse. Na primeira solução obtida, resolvemos a equação sem potencial escalar e obtemos soluções que representam energia discreta. No segundo caso, resolvemos para o potencial do tipo exponencial. Um resultado interessante foi a ocorrência de estados de energia nula em ambas soluções. Por fim estudamos a equação de Dirac no espaço- tempo de Melvin. Neste problema consideramos a métrica de um espaço que possui um campo magnético constante em uma direção.<br> Abstract : In this work, we presents solutions for the wave equations in curved space-time. We use general relativity principles to formulate quantum wave equations for bosons and fermions. We find an exact solution of the Klein-Gordon equation and determine the energy spectrum of the particle in the cosmic string space-time. In addition, we obtain two exact solutions for the 1+1 dimensional Dirac equation in Rindler space-time. In the last chapter, we consider the Dirac equation in Melvin space-time. The energy spectra are computed and we show their dependence on the magnetic field.