dc.creatorAmore, Paolo
dc.creatorFernández, Francisco Marcelo
dc.date2017
dc.date2020-11-18T14:13:29Z
dc.date.accessioned2023-07-14T23:22:16Z
dc.date.available2023-07-14T23:22:16Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/109370
dc.identifierhttps://www.sciencedirect.com/science/article/abs/pii/S0003491617301963
dc.identifierissn:0003-4916
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7450381
dc.descriptionWe revisit the problem posed by an anharmonic oscillator with a potential given by a polynomial function of the coordinate of degree six that depends on a parameter λ. The ground state can be obtained exactly and its energy E<sub>0</sub> = 1 is independent of λ. This solution is valid only for λ > 0 because the eigenfunction is not square integrable otherwise. Here we show that the perturbation series for the expectation values are Padé and Borel–Padé summable for λ > 0. When λ < 0 the spectrum exhibits an infinite number of avoided crossings at each of which the eigenfunctions undergo dramatic changes in their spatial distribution that we analyse by means of the expectation values ⟨x<sup>2</sup>⟩.
dc.descriptionFacultad de Ciencias Exactas
dc.descriptionInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
dc.formatapplication/pdf
dc.format1-9
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectCiencias Exactas
dc.subjectQuímica
dc.subjectanharmonic oscillator
dc.subjectquasi-exactly solvable
dc.subjectperturbation theory
dc.subjectPadé summation
dc.subjectavoided crossings
dc.titleA quantum-mechanical anharmonic oscillator with a most interesting spectrum
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución