dc.creatorBordag, M.
dc.creatorVassilievich, D.
dc.creatorFalomir, Horacio Alberto
dc.creatorSantángelo, Eve Mariel
dc.date2001
dc.date2020-09-11T15:00:18Z
dc.date.accessioned2023-07-14T22:00:49Z
dc.date.available2023-07-14T22:00:49Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/104421
dc.identifierhttp://hdl.handle.net/11336/98116
dc.identifierhttps://journals.aps.org/prd/abstract/10.1103/PhysRevD.64.045017
dc.identifierissn:0556-2821
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7445271
dc.descriptionWe propose the multiple reflection expansion as a tool for the calculation of heat kernel coefficients. As an example, we give the coefficients for a sphere as a finite sum over reflections, obtaining as a byproduct, a relation between the coefficients for Dirichlet and Neumann boundary conditions. Further, we calculate the heat kernel coefficients for the most general matching conditions on the surface of a sphere, including those cases corresponding to the presence of delta and delta prime background potentials. In the latter case, the multiple reflection expansion is shown to be nonconvergent.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectCiencias Exactas
dc.subjectFísica
dc.subjectheat kernel
dc.subjectmultiple reflection expansion
dc.titleMultiple reflection expansion and heat kernel coefficients
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución