dc.creatorFernández, Francisco Marcelo
dc.creatorGarcía, Javier
dc.date2013-07-12
dc.date2020-09-09T19:17:06Z
dc.date.accessioned2023-07-14T21:57:16Z
dc.date.available2023-07-14T21:57:16Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/104286
dc.identifierhttp://hdl.handle.net/11336/4816
dc.identifierissn:0096-3003
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7445041
dc.descriptionWe calculate the critical parameters for some simple quantum wells by means of the Riccati–Padé method. The original approach converges reasonably well for nonzero angular-momentum quantum number l but rather too slowly for the s states. We therefore propose a simple modification that yields remarkably accurate results for the latter case. The rate of convergence of both methods increases with l and decreases with the radial quantum number n. We compare RPM results with WKB ones for sufficiently large values of l. As illustrative examples we choose the one-dimensional and central-field Gaussian wells as well as the Yukawa potential. The application of perturbation theory by means of the RPM to a class of rational potentials yields interesting and baffling unphysical results.
dc.descriptionInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
dc.formatapplication/pdf
dc.format580-592
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 2.5 Argentina (CC BY-NC-ND 2.5)
dc.subjectQuímica
dc.subjectQuantum wells
dc.subjectCritical parameters
dc.subjectRiccati-padé method
dc.subjectPerturbation theory
dc.titleLocal approximation to the critical parameters of quantum wells
dc.typeArticulo
dc.typePreprint


Este ítem pertenece a la siguiente institución