| dc.creator | Fernández, Francisco Marcelo | |
| dc.creator | García, Javier | |
| dc.date | 2013-07-12 | |
| dc.date | 2020-09-09T19:17:06Z | |
| dc.date.accessioned | 2023-07-14T21:57:16Z | |
| dc.date.available | 2023-07-14T21:57:16Z | |
| dc.identifier | http://sedici.unlp.edu.ar/handle/10915/104286 | |
| dc.identifier | http://hdl.handle.net/11336/4816 | |
| dc.identifier | issn:0096-3003 | |
| dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/7445041 | |
| dc.description | We calculate the critical parameters for some simple quantum wells by means of the Riccati–Padé method. The original approach converges reasonably well for nonzero angular-momentum quantum number l but rather too slowly for the s states. We therefore propose a simple modification that yields remarkably accurate results for the latter case. The rate of convergence of both methods increases with l and decreases with the radial quantum number n. We compare RPM results with WKB ones for sufficiently large values of l. As illustrative examples we choose the one-dimensional and central-field Gaussian wells as well as the Yukawa potential. The application of perturbation theory by means of the RPM to a class of rational potentials yields interesting and baffling unphysical results. | |
| dc.description | Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas | |
| dc.format | application/pdf | |
| dc.format | 580-592 | |
| dc.language | en | |
| dc.rights | http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ | |
| dc.rights | Creative Commons Attribution-NonCommercial-NoDerivs 2.5 Argentina (CC BY-NC-ND 2.5) | |
| dc.subject | Química | |
| dc.subject | Quantum wells | |
| dc.subject | Critical parameters | |
| dc.subject | Riccati-padé method | |
| dc.subject | Perturbation theory | |
| dc.title | Local approximation to the critical parameters of quantum wells | |
| dc.type | Articulo | |
| dc.type | Preprint | |