dc.creatorDurán, Ricardo Guillermo
dc.creatorSanmartino, Marcela
dc.creatorToschi, Marisa
dc.date2011-04
dc.date2020-06-16T17:57:30Z
dc.date.accessioned2023-07-14T20:38:31Z
dc.date.available2023-07-14T20:38:31Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/98318
dc.identifierhttps://ri.conicet.gov.ar/11336/14930
dc.identifierissn:0373-3114
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7440031
dc.descriptionThis work deals with the system (−Δ)mu = a(x) vp, (−Δ)mv = b(x) uq with Dirichlet boundary condition in a domain Ω⊂Rn , where Ω is a ball if n ≥ 3 or a smooth perturbation of a ball when n = 2. We prove that, under appropriate conditions on the parameters (a, b, p, q, m, n), any nonnegative solution (u, v) of the system is bounded by a constant independent of (u, v). Moreover, we prove that the conditions are sharp in the sense that, up to some border case, the relation on the parameters are also necessary. The case m = 1 was considered by Souplet (Nonlinear Partial Differ Equ Appl 20:464–479, 2004). Our paper generalize to m ≥ 1 the results of that paper.
dc.descriptionFacultad de Ciencias Exactas
dc.descriptionConsejo Nacional de Investigaciones Científicas y Técnicas
dc.formatapplication/pdf
dc.format771-782
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectMatemática
dc.subjectElliptic systems
dc.subjectA priori estimates
dc.subjectCritical exponents
dc.subjectWeighted sobolev spaces
dc.titleOn the existence of bounded solutions for a nonlinear elliptic system
dc.typeArticulo
dc.typePreprint


Este ítem pertenece a la siguiente institución