dc.creatorAndruchow, Esteban
dc.creatorChiumiento, Eduardo Hernán
dc.creatorLarotonda, Gabriel
dc.date2018-07
dc.date2020-07-02T17:25:44Z
dc.date.accessioned2023-07-14T20:38:15Z
dc.date.available2023-07-14T20:38:15Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/99798
dc.identifierhttps://ri.conicet.gov.ar/11336/87432
dc.identifierissn:0022-1236
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7440015
dc.descriptionLet L2 be the Lebesgue space of square-integrable functions on the unit circle. We show that the injectivity problem for Toeplitz operators is linked to the existence of geodesics in the Grassmann manifold of L2. We also investigate this connection in the context of restricted Grassmann manifolds associated to p-Schatten ideals and essentially commuting projections.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format329-355
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectMatemática
dc.subjectGeodesic
dc.subjectSato grassmannian
dc.subjectSchatten ideal
dc.subjectToeplitz operator
dc.titleGeometric significance of Toeplitz kernels
dc.typeArticulo
dc.typePreprint


Este ítem pertenece a la siguiente institución