dc.creatorChiumiento, Eduardo Hernán
dc.creatorMaestripieri, Alejandra Laura
dc.creatorMartínez Pería, Francisco Dardo
dc.date2015-07
dc.date2020-07-17T18:59:16Z
dc.date.accessioned2023-07-14T20:36:09Z
dc.date.available2023-07-14T20:36:09Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/101041
dc.identifierhttps://ri.conicet.gov.ar/11336/17759
dc.identifierissn:1841-7744
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7439879
dc.descriptionLet H be a Krein space with fundamental symmetry J. Along this paper, the geometric structure of the set of J-normal projections Q is studied. The group of J-unitary operators UJ naturally acts on Q. Each orbit of this action turns out to be an analytic homogeneous space of UJ, and a connected component of Q. The relationship between Q and the set E of J-selfadjoint projections is analized: both sets are analytic submanifolds of L(H) and there is a natural real analytic submersion from Q onto E, namely Q↦QQ#. The range of a J-normal projection is always a pseudo-regular subspace. Then, for a fixed pseudo-regular subspace S, it is proved that the set of J-normal projections onto S is a covering space of the subset of J-normal projections onto S with fixed regular part.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format75-99
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectMatemática
dc.subjectNormal operator
dc.subjectProjection
dc.subjectKrein space
dc.subjectSubmanifold
dc.titleOn the geometry of normal projections in Krein spaces
dc.typeArticulo
dc.typePreprint


Este ítem pertenece a la siguiente institución