dc.creatorMartínez Pastur, Guillermo José
dc.creatorSoler Esteban, Rosina Matilde
dc.creatorCellini, Juan Manuel
dc.creatorLencinas, María Vanessa
dc.creatorPeri, Pablo Luis
dc.creatorNeyland, Mark G.
dc.date2014-01
dc.date2020-07-16T18:33:45Z
dc.date.accessioned2023-07-14T20:35:44Z
dc.date.available2023-07-14T20:35:44Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/100923
dc.identifierhttps://ri.conicet.gov.ar/11336/5496
dc.identifierhttp://link.springer.com/article/10.1007%2Fs13595-013-0343-3
dc.identifierissn:1286-4560
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7439852
dc.descriptionContext: Variable retention prescriptions for Nothofagus pumilio forests provide for biodiversity conservation and natural regeneration by controlled opening of the canopy. Harvesting generates different microenvironments which present dissimilar conditions for seedling establishment, due to positive or negative influences over biotic and abiotic factors. Aims: This study evaluated seedling survival and performance in different microenvironments within the harvested stands. Tested hypotheses stated that seedling stress and performance were influenced by harvesting due to changes in forest structure, microclimate, soil properties, and nutrient availability. Methods: In the stands harvested by variable retention, five contrasting microenvironments were selected as treatments for the experiments and sampling. Environmental variables were related to ecophysiological, seedling survival, and performance. Results: The modification of forest structure (crown cover and tree density) and the presence of coarse woody debris greatly affect the effective rainfall and global radiation reaching understorey level, influencing seedling stress and consequently survival and performance. Harvesting also modifies soil properties (e.g., soil bulk density) and coarse woody debris accumulation which in turn influences soil moisture and/or solar radiation levels. Analyses showed that seedlings received benefits of microenvironment variation after harvesting. Areas covered with middle or fine woody debris presented regeneration with better ecophysiological response and seedling performance, although dispersed retention areas (far away from remnant trees) and roads could also present suitable conditions for seedling survival and performance. Conclusions: The proportion of different microenvironments in the harvested forests will determine the amount of natural recruitment of regeneration and consequently the success of proposed silvicultural management. Forest practices must be manipulated to increase the proportion of favorable microenvironments (e.g., woody debris), allowing greater natural regeneration success during the first years after harvesting.
dc.descriptionLaboratorio de Investigación de Sistemas Ecológicos y Ambientales
dc.formatapplication/pdf
dc.format349-362
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectIngeniería Forestal
dc.subjectAggregated retention
dc.subjectDispersed retention
dc.subjectMicroenvironments
dc.subjectLigth availability
dc.subjectSoil moisture
dc.subjectSoil properties
dc.titleSurvival and growth of Nothofagus pumilio seedlings under several microenvironments after variable retention harvesting in southern Patagonian forests
dc.typeArticulo
dc.typePreprint


Este ítem pertenece a la siguiente institución