dc.creatorAlejo, Javier
dc.creatorMontes Rojas, Gabriel Victorio
dc.creatorSosa Escudero, Walter
dc.date2018-05
dc.date2020-08-10T17:33:20Z
dc.date.accessioned2023-07-14T20:34:30Z
dc.date.available2023-07-14T20:34:30Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/101815
dc.identifierhttps://ri.conicet.gov.ar/11336/87244
dc.identifierissn:0047-259X
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7439778
dc.descriptionThis paper proposes a simple hierarchical model and a testing strategy to identify intra-cluster correlations, in the form of nested random effects and serially correlated error components. We focus on intra-cluster serial correlation at different nested levels, a topic that has not been studied in the literature before. A Neyman's C(α) framework is used to derive LM-type tests that allow researchers to identify the appropriate level of clustering as well as the type of intra-group correlation. An extensive Monte Carlo exercise shows that the proposed tests perform well in finite samples and under non-Gaussian distributions.
dc.descriptionCentro de Estudios Distributivos, Laborales y Sociales
dc.formatapplication/pdf
dc.format101-116
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectCiencias Económicas
dc.subjectClusters
dc.subjectRandom effects
dc.subjectSerial correlation
dc.titleTesting for serial correlation in hierarchical linear models
dc.typeArticulo
dc.typePreprint


Este ítem pertenece a la siguiente institución