dc.creatorCorach, Gustavo
dc.creatorMassey, Pedro Gustavo
dc.creatorRuiz, Mariano Andrés
dc.date2014-06
dc.date2020-08-13T16:16:54Z
dc.date.accessioned2023-07-14T20:33:49Z
dc.date.available2023-07-14T20:33:49Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/102245
dc.identifierhttps://ri.conicet.gov.ar/11336/12166
dc.identifierhttp://link.springer.com/article/10.1007/s10440-013-9853-0
dc.identifierhttps://arxiv.org/abs/1309.7914
dc.identifierissn:0167-8019
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7439731
dc.descriptionParseval frames have particularly useful properties, and in some cases, they can be used to reconstruct signals which were analyzed by a non-Parseval frame. In this paper, we completely describe the degree to which such reconstruction is feasible. Indeed, notice that for fixed frames F and X with synthesis operators F and X, the operator norm of FX∗−I measures the (normalized) worst-case error in the reconstruction of vectors when analyzed with X and synthesized with F . Hence, for any given frame F , we compute explicitly the infimum of the operator norm of FX∗−I, where X is any Parseval frame. The X ’s that minimize this quantity are called Parseval quasi-dual frames of F . Our treatment considers both finite and infinite Parseval quasi-dual frames.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format179-195
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectMatemática
dc.subjectProcrustes problems
dc.subjectParseval frames
dc.subjectDual frames
dc.titleProcrustes problems and Parseval quasi-dual frames
dc.typeArticulo
dc.typePreprint


Este ítem pertenece a la siguiente institución