dc.creatorMassey, Pedro Gustavo
dc.creatorRios, Noelia Belén
dc.creatorStojanoff, Demetrio
dc.date2018-11
dc.date2020-07-03T16:03:07Z
dc.date.accessioned2023-07-14T20:30:48Z
dc.date.available2023-07-14T20:30:48Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/99883
dc.identifierhttps://ri.conicet.gov.ar/11336/88407
dc.identifierissn:0024-3795
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7439531
dc.descriptionLidskii's additive inequalities (both for eigenvalues and singular values) can be interpreted as an explicit description of global minimizers of functions that are built on unitarily invariant norms, with domains consisting of certain orbits of matrices (under the action of the unitary group). In this paper, we show that Lidskii's inequalities actually describe all global minimizers of such functions and that local minimizers are also global minimizers. We use these results to obtain partial results related to local minimizers of generalized frame operator distances in the context of finite frame theory.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format34-61
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectMatemática
dc.subjectFrame operator distance
dc.subjectLidskii's inequality
dc.subjectMajorization
dc.subjectUnitarily invariant norms
dc.titleLocal Lidskii's theorems for unitarily invariant norms
dc.typeArticulo
dc.typePreprint


Este ítem pertenece a la siguiente institución