dc.creatorQuiroga, Facundo Manuel
dc.date2020-05
dc.date2020-06-01T16:17:04Z
dc.date.accessioned2023-07-14T20:30:34Z
dc.date.available2023-07-14T20:30:34Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/97204
dc.identifierissn:1666-6038
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7439517
dc.descriptionOur main objective in this thesis is to contribute to the understanding and improvement of equivariance in neural network models. In terms of applications, we focus on handshape classification for sign language and other types of gestures using convolutional networks. Therefore, we set the following specific goals: • Analyze CNN models design specifically for equivariance • Compare specific models and data augmentation as means to obtain equivariance. Evaluate transfer learning strategies to obtain equivariant models starting with non-equivariant ones. • Develop equivariance measures for activations or inner representations in Neural Networks. Implement those measures in an open source library. Analyze the measures behavior, and compare with existing measures.
dc.descriptionFacultad de Informática
dc.formatapplication/pdf
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsCreative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.subjectCiencias Informáticas
dc.subjectNeural networks
dc.subjectConvolutional Neural Networks
dc.titleInvariance and Same-Equivariance Measures for Convolutional Neural Networks
dc.typeArticulo
dc.typeRevision


Este ítem pertenece a la siguiente institución