dc.creatorCastiglioni, José Luis
dc.creatorSan Martín, Hernán Javier
dc.date2012-06
dc.date2020-05-14T14:18:55Z
dc.date.accessioned2023-07-14T20:12:16Z
dc.date.available2023-07-14T20:12:16Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/95933
dc.identifierhttps://ri.conicet.gov.ar/11336/9200
dc.identifierhttp://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol53
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7438309
dc.descriptionThe finite model property of the variety of S-algebras was proved by X. Caicedo using Kripke model techniques of the associated calculus. A more algebraic proof, but still strongly based on Kripke model ideas, was given by Muravitskii. In this article we give a purely algebraic proof for the finite model property which is strongly based on the fact that for every element x in a S-algebra the interval [x, S(x)] is a Boolean lattice.
dc.descriptionFacultad de Ciencias Exactas
dc.descriptionConsejo Nacional de Investigaciones Científicas y Técnicas
dc.formatapplication/pdf
dc.format91-96
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectMatemática
dc.subjectSuccessor operator
dc.subjectFinite model property
dc.subjectHeyting algebras
dc.titleThe finite model property for the variety of Heyting algebras with successor
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución