dc.creatorFantino, Fernando Amado
dc.creatorGarcía, Gastón Andrés
dc.creatorMastnak, Mitja
dc.date2019
dc.date2020-06-08T17:02:25Z
dc.date.accessioned2023-07-14T20:07:44Z
dc.date.available2023-07-14T20:07:44Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/97732
dc.identifierhttps://ri.conicet.gov.ar/11336/83342
dc.identifierissn:0022-4049
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7438015
dc.descriptionWe classify all finite-dimensional Hopf algebras over an algebraically closed field of characteristic zero such that its coradical is isomorphic to the algebra of functions k<sup>D<sub>m</sub></sup> over a dihedral group D<sub>m</sub>, with m = 4a ≥ 12. We obtain this classification by means of the lifting method, where we use cohomology theory to determine all possible deformations. Our result provides an infinite family of new examples of finite-dimensional copointed Hopf algebras over dihedral groups.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format3611-3634
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectMatemática
dc.subjectCiencias Exactas
dc.subjectDeformations
dc.subjectDihedral group
dc.subjectHopf algebras
dc.subjectNichols algebras
dc.titleOn finite-dimensional copointed Hopf algebras over dihedral groups
dc.typeArticulo
dc.typePreprint


Este ítem pertenece a la siguiente institución