dc.creatorAmore, Paolo
dc.creatorFernández, Francisco Marcelo
dc.date2015
dc.date2020-06-01T20:19:33Z
dc.date.accessioned2023-07-14T20:06:37Z
dc.date.available2023-07-14T20:06:37Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/97259
dc.identifierhttps://ri.conicet.gov.ar/11336/81894
dc.identifierhttps://www.sciencedirect.com/science/article/abs/pii/S0003491615002894
dc.identifierissn:0003-4916
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7437940
dc.descriptionWe study a quantum-mechanical system of three particles in a one-dimensional box with two-particle harmonic interactions. The symmetry of the system is described by the point group D<sub>3d</sub>. Group theory greatly facilitates the application of perturbation theory and the Rayleigh-Ritz variational method. A great advantage is that every irreducible representation can be treated separately. Group theory enables us to predict the connection between the states for the small box length and large box length regimes of the system. We discuss the crossings and avoided crossings of the energy levels as well as other interesting features of the spectrum of the system.
dc.descriptionInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
dc.formatapplication/pdf
dc.format118-129
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 2.5 Argentina (CC BY-NC-ND 2.5)
dc.subjectQuímica
dc.subjectCiencias Naturales
dc.subjectCiencias Exactas
dc.subjectFísica
dc.subjectBox trap
dc.subjectIdentical particles
dc.subjectPerturbation theory
dc.subjectPoint-group symmetry
dc.subjectVariational method
dc.titleOn the symmetry of three identical interacting particles in a one-dimensional box
dc.typeArticulo
dc.typePreprint


Este ítem pertenece a la siguiente institución