dc.creatorHolik, Federico Hernán
dc.creatorPlastino, Ángel Luis
dc.date2012-07
dc.date2020-05-18T13:42:26Z
dc.date.accessioned2023-07-14T20:02:43Z
dc.date.available2023-07-14T20:02:43Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/96117
dc.identifierhttps://ri.conicet.gov.ar/11336/74539
dc.identifierhttps://aip.scitation.org/doi/10.1063/1.4731769
dc.identifierissn:0022-2488
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7437690
dc.descriptionConvex operational models (COMs) are considered as great extrapolations to larger settings of any statistical theory. In this article, we generalize the maximum entropy principle (MaxEnt) of Jaynes' to any COM. After expressing MaxEnt in a geometrical and lattice theoretical setting, we are able to cast it for any COM. This scope-amplification opens the door to a new systematization of the principle and sheds light into its geometrical structure.
dc.descriptionInstituto de Física La Plata
dc.descriptionConsejo Nacional de Investigaciones Científicas y Técnicas
dc.formatapplication/pdf
dc.format1-7
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectFísica
dc.subjectMaxent
dc.subjectEffects
dc.subjectStatistical
dc.subjectQuantum
dc.titleQuantal effects and MaxEnt
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución