dc.creatorCastiglioni, José Luis
dc.creatorSan Martín, Hernán Javier
dc.date2019-07
dc.date2020-06-30T15:37:18Z
dc.date.accessioned2023-07-14T19:58:35Z
dc.date.available2023-07-14T19:58:35Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/99526
dc.identifierhttps://ri.conicet.gov.ar/11336/94687
dc.identifierhttp://link.springer.com/10.1007/s00500-018-3426-0
dc.identifierhttps://arxiv.org/abs/1807.02423
dc.identifierissn:1433-7479
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7437423
dc.descriptionCelani and Jansana (Math Log Q 58(3):188–207, 2012) give an explicit description of the free implicative semilattice extension of a Hilbert algebra. In this paper, we give an alternative path conducing to this construction. Furthermore, following our procedure, we show that an adjunction can be obtained between the algebraic categories of Hilbert algebras with supremum and that of generalized Heyting algebras. Finally, in the last section, we describe a functor from the algebraic category of Hilbert algebras to that of generalized Heyting algebras, of possible independent interest.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format4633–4641
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectMatemática
dc.subjectFree algebras
dc.subjectHilbert algebras
dc.subjectImplicative semilattice
dc.titleVariations of the free implicative semilattice extension of a Hilbert algebra
dc.typeArticulo
dc.typePreprint


Este ítem pertenece a la siguiente institución