dc.creatorFalomir, Horacio Alberto
dc.creatorGonzález Pisani, Pablo Andrés
dc.creatorVega, Federico Gaspar
dc.creatorCárcamo, D.
dc.creatorMéndez, F.
dc.creatorLoewe, M.
dc.date2016-01
dc.date2020-06-30T16:28:14Z
dc.date.accessioned2023-07-14T19:54:56Z
dc.date.available2023-07-14T19:54:56Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/99534
dc.identifierhttps://ri.conicet.gov.ar/11336/54415
dc.identifierissn:1751-8113
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7437181
dc.descriptionWe study two-dimensional Hamiltonians in phase space with noncommutativity both in coordinates and momenta. We consider the generator of rotations on the noncommutative plane and the Lie algebra generated by Hermitian rotationally invariant quadratic forms of noncommutative dynamical variables. We show that two quantum phases are possible, characterized by the Lie algebras sl (2, ℝ) or su(2) according to the relation between the noncommutativity parameters, with the rotation generator related with the Casimir operator. From this algebraic perspective, we analyze the spectrum of some simple models with nonrelativistic rotationally invariant Hamiltonians in this noncommutative phase space, such as the isotropic harmonic oscillator, the Landau problem and the cylindrical well potential.
dc.descriptionInstituto de Física La Plata
dc.formatapplication/pdf
dc.format55202-55248
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectMatemática
dc.subjectFísica
dc.subjectNoncommutative phase space
dc.subjectQuantum mechanics
dc.subjectSpectrum of rotationally invariant hamiltonians
dc.titleOn the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución