dc.creatorFernández, Francisco Marcelo
dc.date2015-05
dc.date2020-06-29T18:28:36Z
dc.date.accessioned2023-07-14T19:50:58Z
dc.date.available2023-07-14T19:50:58Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/99429
dc.identifierhttps://ri.conicet.gov.ar/11336/48728
dc.identifierhttps://arxiv.org/abs/1501.00975
dc.identifierissn:0003-4916
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7436929
dc.descriptionThis paper illustrates the application of group theory to a quantum-mechanical three-dimensional quartic anharmonic oscillator with Oh symmetry. It is shown that group theory predicts the degeneracy of the energy levels and facilitates the application of perturbation theory and the Rayleigh-Ritz variational method as well as the interpretation of the results in terms of the symmetry of the solutions. We show how to obtain suitable symmetry-adapted basis sets.
dc.descriptionInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
dc.formatapplication/pdf
dc.format149-157
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectFísica
dc.subjectAnharmonic oscillator
dc.subjectGroup theory
dc.subjectOh point group
dc.subjectPerturbation theory
dc.subjectSymmetry-adapted basis set
dc.subjectVariational method
dc.titleGroup theoretical analysis of a quantum-mechanical three-dimensional quartic anharmonic oscillator
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución