dc.creator | Fernández, Francisco Marcelo | |
dc.date | 2015-05 | |
dc.date | 2020-06-29T18:28:36Z | |
dc.date.accessioned | 2023-07-14T19:50:58Z | |
dc.date.available | 2023-07-14T19:50:58Z | |
dc.identifier | http://sedici.unlp.edu.ar/handle/10915/99429 | |
dc.identifier | https://ri.conicet.gov.ar/11336/48728 | |
dc.identifier | https://arxiv.org/abs/1501.00975 | |
dc.identifier | issn:0003-4916 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/7436929 | |
dc.description | This paper illustrates the application of group theory to a quantum-mechanical three-dimensional quartic anharmonic oscillator with Oh symmetry. It is shown that group theory predicts the degeneracy of the energy levels and facilitates the application of perturbation theory and the Rayleigh-Ritz variational method as well as the interpretation of the results in terms of the symmetry of the solutions. We show how to obtain suitable symmetry-adapted basis sets. | |
dc.description | Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas | |
dc.format | application/pdf | |
dc.format | 149-157 | |
dc.language | en | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
dc.subject | Física | |
dc.subject | Anharmonic oscillator | |
dc.subject | Group theory | |
dc.subject | Oh point group | |
dc.subject | Perturbation theory | |
dc.subject | Symmetry-adapted basis set | |
dc.subject | Variational method | |
dc.title | Group theoretical analysis of a quantum-mechanical three-dimensional quartic anharmonic oscillator | |
dc.type | Articulo | |
dc.type | Articulo | |