dc.creatorVericat, Fernando
dc.date2013-10
dc.date2020-07-07T12:39:26Z
dc.date.accessioned2023-07-14T19:45:31Z
dc.date.available2023-07-14T19:45:31Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/100077
dc.identifierhttps://ri.conicet.gov.ar/11336/23537
dc.identifierissn:0378-4371
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7436570
dc.descriptionIn recent years, there has been some interest in applying ideas and methods taken from Physics in order to approach several challenging mathematical problems, particularly the Riemann Hypothesis. Most of these kinds of contributions are suggested by some quantum statistical physics problems or by questions originated in chaos theory. In this article, we show that the real part of the non-trivial zeros of the Riemann zeta function extremizes the grand potential corresponding to a simple model of one-dimensional classical lattice gas, the critical point being located at 1/2 as the Riemann Hypothesis claims.
dc.descriptionGrupo de Aplicaciones Matemáticas y Estadísticas de la Facultad de Ingeniería
dc.formatapplication/pdf
dc.format4516-4522
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectFísica
dc.subjectLattice gas
dc.subjectPrime numbers
dc.subjectVariational principle
dc.subjectRiemann hypothesis
dc.titleA lattice gas of prime numbers and the Riemann Hypothesis
dc.typeArticulo
dc.typePreprint


Este ítem pertenece a la siguiente institución