dc.creator | Hernando de Castro, Alberto | |
dc.creator | Plastino, Ángel Luis | |
dc.date | 2012-11 | |
dc.date | 2020-06-01T17:42:44Z | |
dc.date.accessioned | 2023-07-14T19:45:10Z | |
dc.date.available | 2023-07-14T19:45:10Z | |
dc.identifier | http://sedici.unlp.edu.ar/handle/10915/97226 | |
dc.identifier | https://ri.conicet.gov.ar/11336/23413 | |
dc.identifier | https://arxiv.org/abs/1204.2422 | |
dc.identifier | issn:0375-9601 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/7436546 | |
dc.description | On the basis of dynamical principles we i) advance a derivation of the Logistic Equation (LE), widely employed (among multiple applications) in the simulation of population growth, and ii) demonstrate that scale-invariance and a mean-value constraint are sufficient and necessary conditions for obtaining it. We also generalize the LE to multi-component systems and show that the above dynamical mechanisms underlie a large number of scale-free processes. Examples are presented regarding city-populations, diffusion in complex networks, and popularity of technological products, all of them obeying the multi-component logistic equation in an either stochastic or deterministic way. | |
dc.description | Instituto de Física La Plata | |
dc.description | Consejo Nacional de Investigaciones Científicas y Técnicas | |
dc.format | application/pdf | |
dc.format | 176-180 | |
dc.language | en | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
dc.subject | Física | |
dc.subject | Logistic equation | |
dc.subject | Scale-invariance | |
dc.subject | Social system | |
dc.title | Scale-invariance underlying the logistic equation and its social applications | |
dc.type | Articulo | |
dc.type | Preprint | |