dc.creatorHernando de Castro, Alberto
dc.creatorPlastino, Ángel Luis
dc.date2012-11
dc.date2020-06-01T17:42:44Z
dc.date.accessioned2023-07-14T19:45:10Z
dc.date.available2023-07-14T19:45:10Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/97226
dc.identifierhttps://ri.conicet.gov.ar/11336/23413
dc.identifierhttps://arxiv.org/abs/1204.2422
dc.identifierissn:0375-9601
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7436546
dc.descriptionOn the basis of dynamical principles we i) advance a derivation of the Logistic Equation (LE), widely employed (among multiple applications) in the simulation of population growth, and ii) demonstrate that scale-invariance and a mean-value constraint are sufficient and necessary conditions for obtaining it. We also generalize the LE to multi-component systems and show that the above dynamical mechanisms underlie a large number of scale-free processes. Examples are presented regarding city-populations, diffusion in complex networks, and popularity of technological products, all of them obeying the multi-component logistic equation in an either stochastic or deterministic way.
dc.descriptionInstituto de Física La Plata
dc.descriptionConsejo Nacional de Investigaciones Científicas y Técnicas
dc.formatapplication/pdf
dc.format176-180
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectFísica
dc.subjectLogistic equation
dc.subjectScale-invariance
dc.subjectSocial system
dc.titleScale-invariance underlying the logistic equation and its social applications
dc.typeArticulo
dc.typePreprint


Este ítem pertenece a la siguiente institución