dc.creatorMenni, Matías
dc.date2017-11
dc.date2020-06-16T19:34:22Z
dc.date.accessioned2023-07-14T19:43:06Z
dc.date.available2023-07-14T19:43:06Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/98344
dc.identifierhttps://ri.conicet.gov.ar/11336/57061
dc.identifierhttp://tcms.org.ge/Journals/TMJ/Volume10/Volume10_3/Abstract/abstract10_3_9.html
dc.identifierissn:1512-0139
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7436412
dc.descriptionWe study a construction suggested by Lawvere to rationalize, within a generalization of Axiomatic Cohesion, the classical construction of π0 as the image of a natural map to a product of discrete spaces. A particular case of this construction produces, out of a local and hyperconnected geometric morphism p : E → S, an idempotent monad π0 : E → E such that, for every X in E, π X = 1 if and only if (p* Ω)! : (p* Ω)1 → (p* Ω)X is an isomorphism. For instance, if E is the topological topos (over S = Set), the π0-algebras coincide with the totally separated (sequential) spaces. To illustrate the connection with classical topology we show that the π0-algebras in the category of compactly generated Hausdorff spaces are exactly the totally separated ones. Also, in order to relate the construction above with the axioms for Cohesion we prove that, for a local and hyperconnected p : E → S, p is pre-cohesive if and only if p* : E → S is cartesian closed. In this case, p! = p* π0 : E → S and the category of π0-algebras coincides with the subcategory p* : E → S.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format183-207
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectMatemática
dc.subjectAxiomatic cohesion
dc.subjectTopology
dc.titleThe construction of π₀ in Axiomatic Cohesion
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución