dc.creatorColabella, Lucas
dc.creatorCisilino, Adrián P.
dc.creatorHäiat, Guillaume
dc.creatorKowalczyk, Piotr
dc.date2017-11
dc.date2017
dc.date2020-04-29T15:54:25Z
dc.date.accessioned2023-07-14T19:33:17Z
dc.date.available2023-07-14T19:33:17Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/94555
dc.identifierhttps://cimec.org.ar/ojs/index.php/mc/article/view/5265
dc.identifierissn:2591-3522
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7435762
dc.descriptionBone tissue mechanical properties and trabecular microarchitecture are the main factors that determine the biomechanical properties of cancellous bone. Artificial cancellous microstructures, typically described by a reduced number of geometrical parameters, can be designed to obtain a mechanical behavior mimicking that of natural bone. In this work, we assess the ability of the parameterized microstructure introduced by Kowalczyk (P. Kowalczyk, <i>Comput Meth Biomech Biomed Eng</i>, 9:135–147, 2006) to mimic the elastic response of cancellous bone. An optimization approach is devised to find the geometrical parameters of the artificial microstructure that better mimics the elastic response of target natural bone specimen. This is done via a Pattern Search algorithm that minimizes the difference between the symmetry class decompositions of the elastic tensors. The performance of the method is demonstrated via analyses for 146 bone samples.
dc.descriptionPublicado en: <i>Mecánica Computacional</i> vol. XXXV, no. 8.
dc.descriptionFacultad de Ingeniería
dc.formatapplication/pdf
dc.format329-347
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectIngeniería
dc.subjectBiomimetism
dc.subjectParameterized microstructures
dc.subjectSymmetry classes
dc.titleParameterized cellular material for the elastic mimetization of cancellous bone
dc.typeObjeto de conferencia
dc.typeObjeto de conferencia


Este ítem pertenece a la siguiente institución