dc.creatorCagnina, Leticia
dc.creatorErrecalde, Marcelo Luis
dc.creatorGarciarena Ucelay, María José
dc.creatorFunez, Dario G.
dc.creatorVillegas, María Paula
dc.date2019-10
dc.date2019
dc.date2020-03-10T12:10:51Z
dc.date.accessioned2023-07-14T18:42:44Z
dc.date.available2023-07-14T18:42:44Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/90534
dc.identifierisbn:978-987-688-377-1
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7432484
dc.descriptionThe increasing use of social media allows the extraction of valuable information to early prevent some risks. Such is the case of the use of blogs to early detect people with signs of depression. In order to address this problem, we describe k-temporal variation of terms (k-TVT), a method which uses the variation of vocabulary along the different time steps as concept space to represent the documents. An interesting particularity of this approach is the possibility of setting a parameter (the k value) depending on the urgency (earliness) level required to detect the risky (depressed) cases. Results on the early detection of depression data set from eRisk 2017 seem to confirm the robustness of k-TVT for different urgency levels using SVM as classifier. Besides, some recent results on an extension of this collection would confirm the effectiveness of k-TVT as one of the state-of-the-art methods for early depression detection.
dc.descriptionXVI Workshop Bases de Datos y Minería de Datos.
dc.descriptionRed de Universidades con Carreras en Informática
dc.formatapplication/pdf
dc.format547-556
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectCiencias Informáticas
dc.subjectEarly Risk Prediction
dc.subjectEarly Depression Detection
dc.subjectText Representation
dc.subjectSemantic Analysis Techniques
dc.subjectTemporal Variation of Terms
dc.titlek-TVT: a flexible and effective method for early depression detection
dc.typeObjeto de conferencia
dc.typeObjeto de conferencia


Este ítem pertenece a la siguiente institución