dc.creatorBotta Cantcheff, Marcelo Ángel Nicolás
dc.creatorMartínez, Pedro Jorge
dc.creatorSilva, Guillermo Ariel
dc.date2018-11-21
dc.date2020-02-20T13:10:43Z
dc.date.accessioned2023-07-14T18:30:30Z
dc.date.available2023-07-14T18:30:30Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/89431
dc.identifierissn:1029-8479
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7431679
dc.descriptionWe present a spherically symmetric aAdS gravity solution with Schwinger-Keldysh boundary condition dual to a CFT at finite temperature defined on a complex time contour. The geometry is built by gluing the exterior of a two-sided AdS Black Hole, the (aAdS) Einstein-Rosen wormhole, with two Euclidean black hole halves. These pieces are interpreted as the gravity duals of the two Euclidean β/2 segments in the SK path, each coinciding with a Hartle-Hawking-Maldacena (TFD) vacuum state, while the Lorentzian regions naturally describes the real-time evolution of the TFD doubled system. Within the context of Skenderis and van Rees real-time holographic prescription, the new solution should be compared to the Thermal AdS spacetime since both contribute to the gravitational path integral. In this framework, we compute the time ordered 2-pt functions of scalar CFT operators via a non-back-reacting Klein-Gordon field for both backgrounds and confront the results. When solving for the field we find that the gluing leads to a geometric realization of the Unruh trick via a completely holographic prescription. Interesting observations follow from ⟨OLOR⟩, which capture details of the entanglement of the (ground) state and the connectivity of the spacetime.
dc.descriptionInstituto de Física La Plata
dc.formatapplication/pdf
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsCreative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0)
dc.subjectFísica
dc.subjectAdS-CFT Correspondence
dc.subjectBlack Holes
dc.subjectThermal Field Theory
dc.titleThe gravity dual of real-time CFT at finite temperature
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución