dc.creatorRim, Daniela
dc.creatorMoyano, Luis G.
dc.creatorMillán, Emmanuel N.
dc.date2019-09
dc.date2019-12-27T15:37:11Z
dc.date.accessioned2023-07-14T17:55:14Z
dc.date.available2023-07-14T17:55:14Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/87939
dc.identifierissn:2451-7585
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7429365
dc.descriptionUnsupervised Machine Learning algorithms such as clustering offer convenient features for data analysis tasks. When combined with other tools like visualization software, the possibilities of automated analysis may be greatly enhanced. In the context of Molecular Dynamics simulations, in particular asymmetric granular collisions which typically consist of thousands of particles, it is key to distinguish the fragments in which the system is divided after a collision for classification purposes. In this work we explore the unsupervised Machine Learning algorithms k-means and AGNES to distinguish groups of particles in molecular dynamics simulations, with encouraging results according to performance metrics such as accuracy and precision. We also report computational times for each algorithm, where k-means results faster than AGNES. Finally, we delineate the integration of these type of algorithms with a well-known analysis and visualization tool widely used in the physics community.
dc.descriptionSociedad Argentina de Informática e Investigación Operativa
dc.formatapplication/pdf
dc.format137-150
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/3.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
dc.subjectCiencias Informáticas
dc.subjectMachine Learning
dc.subjectUnsupervised Algorithms
dc.subjectMolecular Dynamics
dc.subjectGranular Collisions
dc.titleUnsupervised machine learning algorithms as support tools in molecular dynamics simulations
dc.typeObjeto de conferencia
dc.typeObjeto de conferencia


Este ítem pertenece a la siguiente institución