dc.contributor | Arsuaga José I., Universidad de la República (Uruguay). Instituto de Ingeniería Química. Facultad de Ingeniería | |
dc.contributor | Torres Ana I., Universidad de la República (Uruguay). Instituto de Ingeniería Química. Facultad de Ingeniería | |
dc.creator | Arsuaga, José I. | |
dc.creator | Torres, Ana I. | |
dc.date.accessioned | 2023-04-28T21:17:29Z | |
dc.date.accessioned | 2023-07-13T17:33:25Z | |
dc.date.available | 2023-04-28T21:17:29Z | |
dc.date.available | 2023-07-13T17:33:25Z | |
dc.date.created | 2023-04-28T21:17:29Z | |
dc.date.issued | 2022 | |
dc.identifier | Arsuaga, J. y Torres, A. Determination of adsorption energies from DFT databases using machine learning techniques [Preprint]. Publicado en : Computer Aided Chemical Engineering, vol.51, 2022, pp. 1513-1518. | |
dc.identifier | https://www.sciencedirect.com/science/article/abs/pii/B9780323958790502538?via%3Dihub | |
dc.identifier | https://hdl.handle.net/20.500.12008/36907 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/7425449 | |
dc.description.abstract | This paper discusses the estimation of adsorption energies for reaction intermediates for a given metallic surface and molecule. Regression models are learned from DFT data available in the literature in a two step approach. First, metallic surfaces are characterized by a principal component analysis (PCA) followed by a suitable orthonormal rotation to find a set of species that can be used as descriptors for the metallic surface. Then, different machine learning techniques are considered for the regression using the previous descriptors for the metallic surface and molecular descriptors such as the number and type of bonds for the adsorbate. With the available data, CH3, CO2 and CH2 were found to explain 93% of the total variance, thus were used as surface descriptors. Threeof the tested models were found to adjust similarly well to validation data. | |
dc.language | en | |
dc.relation | Computer Aided Chemical Engineering, vol.51, 2022, pp. 1513-1518. | |
dc.rights | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | |
dc.subject | Adsorption energies | |
dc.subject | Machine learning | |
dc.subject | Electrocatalysis | |
dc.title | Determination of adsorption energies from DFT databases using machine learning techniques. | |
dc.type | Preprint | |