dc.contributorMaia Lucas Simões, Federal University of Rio de Janeiro, Brazil
dc.contributorRocamora Martín, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.contributorBiscainho Luiz W. P., Federal University of Rio de Janeiro, Brazil
dc.contributorFuentes Magdalena, New York University, United States
dc.creatorMaia, Lucas Simões
dc.creatorRocamora, Martín
dc.creatorBiscainho, Luiz W. P.
dc.creatorFuentes, Magdalena
dc.date.accessioned2022-12-05T16:10:04Z
dc.date.accessioned2023-07-13T17:08:08Z
dc.date.available2022-12-05T16:10:04Z
dc.date.available2023-07-13T17:08:08Z
dc.date.created2022-12-05T16:10:04Z
dc.date.issued2022
dc.identifierMaia, L., Rocamora, M., Biscainho, L. y otros. Adapting meter tracking models to Latin American music [en línea]. EN: Proceedings of the 23rd International Society for Music Information Retrieval Conference, ISMIR 2022, Bengaluru, India, 4-8 dec 2022, pp 361-368. DOI: 10.5281/zenodo.7385261
dc.identifierhttps://zenodo.org/record/7385261#.Y4zxwr3MKM_
dc.identifierhttps://hdl.handle.net/20.500.12008/35147
dc.identifier10.5281/zenodo.7385261
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7423684
dc.description.abstractBeat and downbeat tracking models have improved significantly in recent years with the introduction of deep learning methods. However, despite these improvements, several challenges remain. Particularly, the adaptation of available models to underrepresented music traditions in MIR is usually synonymous with collecting and annotating large amounts of data, which is impractical and time-consuming. Transfer learning, data augmentation, and fine-tuning techniques have been used quite successfully in related tasks and are known to alleviate this bottleneck. Furthermore, when studying these music traditions, models are not required to generalize to multiple mainstream music genres but to perform well in more constrained, homogeneous conditions. In this work, we investigate simple yet effective strategies to adapt beat and downbeat tracking models to two different Latin American music traditions and analyze the feasibility of these adaptations in real-world applications concerning the data and computational requirements. Contrary to common belief, our findings show it is possible to achieve good performance by spending just a few minutes annotating a portion of the data and training a model in a standard CPU machine, with the precise amount of resources needed depending on the task and the complexity of the dataset.
dc.languageen
dc.publisherISMIR
dc.relationProceedings of the 23rd International Society for Music Information Retrieval Conference, ISMIR 2022, Bengaluru, India, 4-8 dec 2022, pp 361-368
dc.rightsLicencia Creative Commons Atribución (CC - By 4.0)
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)
dc.subjectBeat
dc.subjectDownbeat
dc.subjectMeter tracking
dc.subjectTransfer learning
dc.subjectFine-tuning
dc.subjectLatin-American music
dc.titleAdapting meter tracking models to Latin American music
dc.typePonencia


Este ítem pertenece a la siguiente institución