dc.creatorCross, Rebecca
dc.date.accessioned2023-02-21T19:19:27Z
dc.date.accessioned2023-07-11T21:47:21Z
dc.date.available2023-02-21T19:19:27Z
dc.date.available2023-07-11T21:47:21Z
dc.date.created2023-02-21T19:19:27Z
dc.date.issued2015
dc.identifier115.pdf
dc.identifier1- GENERAL
dc.identifier978-1-63240-416-9
dc.identifier115
dc.identifierCG0115
dc.identifier115
dc.identifierCG0115
dc.identifierhttps://hdl.handle.net/20.500.14000/67
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7383329
dc.description.abstractThis book on Principal component analysis (PCA) is a significant contribution to the field of data analysis. PCA involves a statistical procedure which orthogonally transforms a set of possibly correlated observations into set of values of linearly uncorrelated variables called principal components. The aim of this book is to enhance knowledge of scientists, engineers and researchers regarding the advantage of this technique in data analysis and includes information on the uses of PCA in distinct fields like multi-sensor data fusion, ecology, energy, agriculture, climate, image and video processing, gas chromatographic examination, color coating, materials science and automatic target identification.
dc.languageeng
dc.publisherClanrye International
dc.publisherJersey City
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectPRINCIPAL COMPONENT ANALYSIS
dc.subjectMETHODOLOGY
dc.subjectAPPLICATIONS
dc.titlePrincipal Component Analysis Handbook
dc.typeLibro


Este ítem pertenece a la siguiente institución