ELLIPSE PERIMETER ESTIMATION USING NON- PARAMETRIC REGRESSION OF RBF NEURAL NETWORK BASED ON ELLIPTIC INTEGRAL OF THE SECOND TYPE

dc.creatorHemati, Sobhan
dc.creatorBeiranvand, Peyman
dc.creatorSharaf, Mehdi
dc.date2023-04-12
dc.date.accessioned2023-06-20T14:02:50Z
dc.date.available2023-06-20T14:02:50Z
dc.identifierhttps://revistas.uh.cu/invoperacional/article/view/3870
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6720758
dc.descriptionMethods for calculating the ellipse perimeter provided so far, including Kepler equation, Euler, Ramanujan, Lindner, Gauss Kumar, do not have acceptable accuracy in some cases. In this study, calculation of ellipse perimeter was done using non- parametric regression of RBF neural network. To train the neural network, the data from the numerical calculation of second type elliptic integral was used. We used the least squares and gradient descent optimization methods to train the neural network and the deviation of the output of these two methods from the accurate method was calculated, using generalization error and learning error measures. Studies show that after the training phase, the network as an individual model, can estimate the ellipse perimeter for different values of eccentricity and major diameter with great accuracy.en-US
dc.descriptionpara calcular el perímetro de la elipse se proveen métodos que incluyen las ecuaciones de Kepler, Euler, Ramanujan, Lindner, Gauss Kumar, que poseen una aceptable exactitud en algunos casos. En este estudio el cálculo del perímetro de la elipse se realizó usando regresión no-paramétrica de redes neuronales RBF. Para entrenar la red neuronal los datos derivados de los cálculos numéricos fueron utilizados. Usamos métodos de optimización mínimos cuadráticos y de gradiente descendente para entrenar la red neuronal y las desviaciones de la salida de los dos métodos del método acurado se calculó usando medidas de los errores de generalización y de aprendizaje. Los estudio muestran que tras la fase de entrenamiento la red como un modelo individual, puede estimar el perímetro de la elipse con diversos valores de excentricidad y mayor diámetro con gran exactitud.es-ES
dc.formatapplication/pdf
dc.languageeng
dc.publisherDepartamento de Matemática Aplicada. Facultad de Matemática y Computación. Universidad de La Habanaen-US
dc.relationhttps://revistas.uh.cu/invoperacional/article/view/3870/3407
dc.rightshttps://creativecommons.org/licenses/by/4.0es-ES
dc.sourceInvestigación Operacional; Vol. 39 No. 4 (2018): Investigación Operacionalen-US
dc.sourceInvestigación Operacional; Vol. 39 Núm. 4 (2018): Investigación Operacionales-ES
dc.source2224-5405
dc.subjectellipse perimeteren-US
dc.subjectRBF neural networken-US
dc.subjectelliptic integral of the second typeen-US
dc.subjecteast squaresen-US
dc.subjectgradient descenten-US
dc.subjectperímetro de una elipsees-ES
dc.subjectRBF red neuronales-ES
dc.subjectintegral elíptica de segundo tipoes-ES
dc.subjectmínimos cuadráticoses-ES
dc.subjectGradiente descendentees-ES
dc.titleELLIPSE PERIMETER ESTIMATION USING NON- PARAMETRIC REGRESSION OF RBF NEURAL NETWORK BASED ON ELLIPTIC INTEGRAL OF THE SECOND TYPEen-US
dc.titleELLIPSE PERIMETER ESTIMATION USING NON- PARAMETRIC REGRESSION OF RBF NEURAL NETWORK BASED ON ELLIPTIC INTEGRAL OF THE SECOND TYPEes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeArticlesen-US
dc.typeArtículoes-ES


Este ítem pertenece a la siguiente institución