dc.creator | Gracia Bondía, José M. | |
dc.creator | Várilly Boyle, Joseph C. | |
dc.date.accessioned | 2023-06-01T13:26:16Z | |
dc.date.accessioned | 2023-06-20T13:55:24Z | |
dc.date.available | 2023-06-01T13:26:16Z | |
dc.date.available | 2023-06-20T13:55:24Z | |
dc.date.created | 2023-06-01T13:26:16Z | |
dc.date.issued | 2010-11-21 | |
dc.identifier | https://hdl.handle.net/10669/89358 | |
dc.identifier | 10.48550/arXiv.1011.4742 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6720611 | |
dc.description.abstract | The determination of the two-body density functional from its one-body density is achieved for Moshinsky's harmonium model, using a phase-space formulation, thereby resolving its phase dilemma. The corresponding sign rules can equivalently be obtained by minimizing the ground-state energy. | |
dc.language | eng | |
dc.source | arXiv e-Print archive | |
dc.subject | Two-body density functional | |
dc.subject | One-body density | |
dc.subject | Harmonium model | |
dc.title | Exact phase space functional for two-body systems | |
dc.type | artículo preliminar | |