dc.contributorFrederico Gadelha Guimarães
dc.contributorhttp://lattes.cnpq.br/2472681535872194
dc.contributorJanier Arias García
dc.contributorCristiano Leite de Castro
dc.creatorLeonam Rezende Soares de Miranda
dc.date.accessioned2023-05-30T19:42:26Z
dc.date.accessioned2023-06-16T16:55:13Z
dc.date.available2023-05-30T19:42:26Z
dc.date.available2023-06-16T16:55:13Z
dc.date.created2023-05-30T19:42:26Z
dc.date.issued2023-02-15
dc.identifierhttp://hdl.handle.net/1843/54194
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6684003
dc.description.abstractIn convolutional neural networks, aggregation operations are performed in the convolution, pooling and fully connected dense layers. Promising results have been obtained in recent years when using ordered weighted averaging operators, better known as OWA operators, to aggregate data within convolutional neural networks. There are recent works demonstrating that there is a performance gain when using OWA operators, training their weights, to perform the pooling operation, when compared with the most usual operators (maximum and average). Other studies have shown that OWA operators can be used to learn additional order-based information from the feature maps of a certain layer, and the newly generated information is used to complement or replace the input data for the next layer. The purpose of this dissertation is to analyze and combine the two mentioned ideas. Several tests were done to evaluate the performance change when applying OWA operators to classify images, using the VGG13, Network in Network and AlexNet models and the CIFAR-10 and CIFAR-100 datasets.
dc.publisherUniversidade Federal de Minas Gerais
dc.publisherBrasil
dc.publisherENG - DEPARTAMENTO DE ENGENHARIA ELÉTRICA
dc.publisherPrograma de Pós-Graduação em Engenharia Elétrica
dc.publisherUFMG
dc.rightsAcesso Aberto
dc.subjectRedes neurais convolucionais
dc.subjectOperadores OWA
dc.subjectAprendizado profundo
dc.subjectFunções de agregação
dc.subjectClassificação de imagens
dc.titleAprendizado de operadores de agregação do tipo média ponderada ordenada em redes neurais convolucionais
dc.typeDissertação


Este ítem pertenece a la siguiente institución