dc.creatorCerutti, Rubén Alejandro
dc.date.accessioned2023-06-12T12:01:37Z
dc.date.accessioned2023-06-16T00:17:02Z
dc.date.available2023-06-12T12:01:37Z
dc.date.available2023-06-16T00:17:02Z
dc.date.created2023-06-12T12:01:37Z
dc.date.issued2007
dc.identifierCerutti, Rubén, 2007. On Bessel-Riesz operators. FACENA. Corrientes: Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura, vol. 23, p. 17-27. ISSN 1851-507X.
dc.identifier1851-507X
dc.identifierhttp://repositorio.unne.edu.ar/handle/123456789/51668
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6670679
dc.description.abstractThis article deals with certain kind of potential operator defined as convolution with the generalized function Wα (P ± i0,m,n)depending on a complex parameter α and a real non negative one m. The definitory formulae and several properties of the family {W (P ± i m n)} α∈C α 0, , α; have been introduced and studied by Trione (see [14]) specially the important followings two: a) Wα ∗Wβ =Wα+β , α and β complex numbers, and b) k W −2 is a fundamental solution of the k-times iterated Klein-Gordon operator Writing Wα (P ± i0,m,n) as an infinite linear combination of the ultrahyperbolic Riesz kernel of different orders Rα (P ± i0)which is a causal (anticausal) elementary solution of the ultrahyperbolic differential operator and taking into account its Fourier transform it is possible to evaluate the Fourier transform of the kernel Wα (P ± i0,m,n). We prove the composition formula Wα ∗Wβϕ =Wα+βϕ for a sufficiently good function. The proof of this result is based on the composition formulae presented by Trione in [14], but we also present a different way. Other simple property studied is the one that establish the relationship between the ultrahyperbolic Klein-Gordon operator and the Wα Bessel-Riesz operator. Finally we obtain an expression that will be consider a fractional power of the Klein-Gordon operator.
dc.languagespa
dc.publisherUniversidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsopenAccess
dc.sourceFACENA, 2007, vol. 23, p. 17-27.
dc.subjectBessel-Riesz potentials
dc.subjectFractional derivative
dc.subjectHypersingular integral
dc.titleOn Bessel-Riesz operators
dc.typeArtículo


Este ítem pertenece a la siguiente institución