dc.contributorAmado Forero, Lusvin Javier
dc.contributorLeguizamo Herrera, Jenaro
dc.contributorAmado Forero, Lusvin Javier [0001376723]
dc.contributorAmado Forero, Lusvin Javier [dqrfjJMAAAAJ]
dc.contributorAmado Forero, Lusvin Javier [0000-0001-5104-9080]
dc.contributorAmado Forero, Lusvin Javier [57204652964]
dc.contributorAmado Forero, Lusvin Javier [Lusvin_Amado]
dc.creatorUribe Rojas, Santiago
dc.date.accessioned2022-09-16T15:51:36Z
dc.date.accessioned2023-06-12T20:44:51Z
dc.date.available2022-09-16T15:51:36Z
dc.date.available2023-06-12T20:44:51Z
dc.date.created2022-09-16T15:51:36Z
dc.date.issued2022
dc.identifierhttp://hdl.handle.net/20.500.12749/17711
dc.identifierinstname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifierreponame:Repositorio Institucional UNAB
dc.identifierrepourl:https://repository.unab.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6664011
dc.description.abstractHay un gran desafío de analizar las variables biomecánicas a ciclistas en campo. Los sistemas como los sensores inerciales que, permiten analizar el movimiento en diferentes ejes, pueden ser portables y hasta más precisos que un sistema de cámaras. Por ello se desarrolló un sistema para el registro de la posición de los ciclistas en ruta usando sensores inerciales para potenciar el gesto deportivo. Se realizó una prueba experimental para verificar la funcionalidad del sistema a diferentes cadencias y posiciones del ciclista. Un ciclista sobre un simulador realizó dos pruebas pedaleando a diferentes cadencias, una de 60 rpm y la otra de 80 rpm. También se pedaleó a diferentes posiciones, 3 cm arriba de la altura base y 3 cm debajo de la altura base. Cuando se modifica la posición base del ciclista, los valores como la rotación de cadera y movimiento del talón cambian. Por ello, el sistema desarrollado identifica y permite analizar cambios de posición de los ciclistas de ruta.
dc.languagespa
dc.publisherUniversidad Autónoma de Bucaramanga UNAB
dc.publisherFacultad Ingeniería
dc.publisherPregrado Ingeniería Biomédica
dc.relationAllen, H. & Group, P. C. (2015, November 25,). Balance: An introduction to left/right power data. Retrieved from https://www.hunterallenpowerblog.com/2015/11/balance-introduction-to leftright-power.html
dc.relationAdafruit BNO055 Absolute Orientation Sensor. (2015, 22 abril). Adafruit Learning System. https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor
dc.relationAdam Hansen Bike Fitting Protocol webinar. (2020, 31 enero). YouTube. https://www.youtube.com/watch?v=mt9zFVQHiSo&ab_channel=LEOMO
dc.relationArduino Nano. (s. f.). Arduino. Recuperado 7 de enero de 2021, de https://arduino.cl/arduino nano/
dc.relationBini, R. R., Dagnese, F., Rocha, E., Silveira, M. C., Carpes, F. P., & Mota, C. B. (2016). Three-dimensional kinematics of competitive and recreational cyclists across different workloads during cycling. European Journal of Sport Science, 16(5), 553-559. doi:10.1080/17461391.2015.1135984
dc.relationBini, R. R., Tamborindeguy, A. C., & Mota, C. B. (2010). Effects of saddle height, pedaling cadence, and workload on joint kinetics and kinematics during cycling. Journal of Sport Rehabilitation, 19(3), 301-314.doi:10.1123/jsr.19.3.301
dc.relationBini, R. R., & Carpes, F. P. (2014). Biomechanics of cycling (2014th ed.). Cham: Springer Verlag. doi:10.1007/978-3-319-05539-8 Retrieved from https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=1731058
dc.relationBurt, P. (2014). BikeFit, Optimise your bike position for high performance and injury avoidance, UK, Bloomsbury Sport. Cain, Stephen. (2016). Measurement of bicycle and rider kinematics during real-world cycling using a wireless array of inertial sensors Figshare. doi:10.6084/M9.FIGSHARE.3851883.V2
dc.relationCockcroft, J. (2011). An evaluation of inertial motion capture technology for use in the analysis and optimization of road cycling kinematics. Engineering
dc.relationCockcroft, J., Muller, J. H., & Scheffer, C. (2014). A novel complementary filter for tracking hip angles during cycling using wireless inertial sensors and dynamic acceleration estimation. IEEE Sensors Journal, 14(8), 2864-2871. doi:10.1109/JSEN.2014.2318897
dc.relationCockcroft, J., H. Muller, & C. Scheffer. (2015). A complementary filter for tracking bicycle crank angles using inertial sensors, kinematic constraints, and vertical acceleration updates doi:10.1109/JSEN.2015.2409314
dc.relationCordillet, S., Bideau, N., Bideau, B., & Nicolas, G. (2019). Estimation of 3D knee joint angles during cycling using inertial sensors: Accuracy of a novel sensor-to-sgment calibration procedure based on pedaling motion. Sensors (Basel, Switzerland), 19(11), 2474. doi:10.3390/s19112474
dc.relationCummins, C., Orr, R., O’Connor, H., & West, C. (2013). Global positioning systems (GPS) and microtechnology sensors in team sports: A systematic review. Sports Medicine, 43(10), 1025-1042. doi:10.1007/s40279-013-0069-2
dc.relationCramblett C,Moen E, Timmerman M, et al.Medicine of cycling bike fit task force consensus statement. Medicine of Cycling. 2013. [cited 2019 October 22]. Available from: https://www.medicineofcycling.com/finalmocpositionstatement8-21/.
dc.relationDavis, R. R., & Hull, M. L. (1981). Measurement of pedal loading in bicycling: II. analysis and results. Journal of Biomechanics, 14(12), 857-872. doi:10.1016/0021 9290(81)90013-0
dc.relationDorel, S., Couturier, A., & Hug, F. (2008). Intra-session repeatability of lower limb muscles activation pattern during pedaling. Journal of Electromyography and Kinesiology: Official Journal of the International Society of Electrophysiological Kinesiology, 18(5), 857-865. doi:10.1016/j.jelekin.2007.03.002
dc.relationGharghan, S.K.; Nordin, R.; Ismail, M. An Ultra-Low Power Wireless Sensor Network for Bicycle Torque Performance Measurements. Sensors 2015, 15, 11741-11768. https://doi.org/10.3390/s150511741
dc.relationGarcía-López, J., Díez-Leal, S., Ogueta-Alday, A., Larrazabal, J., & amp; Rodríguez-Marroyo, J. A. (2016). Differences in pedalling technique between road cyclists of different competitive levels. Journal of Sports Sciences, 34(17), 1619-1626. doi:10.1080/02640414.2015.1127987
dc.relationGarcía-Rubio, J., Pino, J., Olivares, P. R., & Ibáñez, S. J. (2019). Validity and reliability of the WIMU ™ inertial device for the assessment of joint angulations. International Journal of Environmental Research and Public Health, 17(1) doi:10.3390/ijerph17010193
dc.relationGómez-Carmona, C. D., Pino-Ortega, J., & Ibáñez, S. J. (2020). Design and validity of a field test battery for assessing multi-location external load profile in invasion team sports. Journal Sports Science. Recuperado de http://www.e balonmano.com/ojs/index.php/revista/article/view/509
dc.relationGregersen, C. S., & Hull, M. L. (2003). Non-driving intersegmental knee moments in cycling computed using a model that includes three-dimensional kinematics of the shank/foot and the effect of simplifying assumptions. Journal of Biomechanics, 36(6), 803-813. doi:10.1016/s0021-9290(03)00014-9
dc.relationGregor, R. J., Broker, J. P., & Ryan, M. M. (1991). The biomechanics of cycling. Exercise and Sport Sciences Reviews, 19, 127-169. Groot, G. D., Welbergen, E., Clusen, L.
dc.relationClarus, J., Cabri, J., & amp; Antonis, J. (1994). Power, muscular work, and external forces in cycling. Ergonomics, 37(1), 31-42. doi:10.1080/00140139408963620
dc.relationJenaro Sport. (s. f.). Bike Fit [Fotografia]. ¿Qué es el Bike Fit? https://jenarosport.com/bike fit.php
dc.relationJohnston, William. Martin O’Reilly, Rob Argent & Brian Caulfield. (2019). Reliability, validity and utility of inertial sensor systems for postural control assessment in sport science and medicine applications: A systematic review [Abstract]. Sport Medicine, Retrieved from https://link.springer.com/article/10.1007/s40279-019-01095-9
dc.relationLeomo. (2017). Using LEOMO type-R to analyze performance — A case study. Retrieved from https://blog.leomo.io/using-leomo-type-r-to-analyze-performance-a-case-study-part-2 ca5e46e1face
dc.relationLeomo. (s. f.). Leomo Cycling [Fotografia]. https://www.leomo.io/pages/cycling
dc.relationLlamas. (2020, 2 mayo). El bus I2C en Arduino. Luis Llamas. https://www.luisllamas.es/arduino-i2c/
dc.relationMcGrath, T., Fineman, R., & Stirling, L. (2018). An auto-calibrating knee flexion extension axis estimator using principal component analysis with inertial sensors. Sensors (Basel, Switzerland), 18(6) doi:10.3390/s18061882
dc.relationMellion, M. B. (1991). Common cycling injuries. Sports Med, 11, 50-70
dc.relationMuyor, J. M., Granero-Gil, P., & Pino-Ortega, J. (2017). Reliability and validity of a new accelerometer (wimu®) system for measuring velocity during resistance exercises: Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, doi:10.1177/1754337117731700
dc.relationPeveler, W., & Green, J. (2011). Effects of saddle height on economy and anaerobic power in well-trained cyclists. Journal of Strength and Conditioning Research, 25(3), 629-633. doi:10.1519/JSC.0b013e3181d09e60
dc.relationRannama, Indrek. Kirsti Pedak, Karmen Reinpõld, Kristjan Port. (2016). Pedalling technique and postural stability during incremental cycling exercise – relationship with cyclist fmstm score. Lase Journal of Sport Science
dc.relationRealTrack Systems. (2014). Cycling: Discovering brand new horizons with wimu and moxy | RealTrack systems. Retrieved from http://blog.realtracksystems.com/2014/09/11/cycling dicovering-brand-new- horizons-with-wimu-and-moxy/
dc.relationRodríguez Munca, J. D. (2016). dispositivo lora de comunicación a largo alcance y bajo consumo energético para aplicaciones del ámbito del desarrollo. Universidad Politécnica de Madrid. Retrieved from https://oa.upm.es/44890/1/TFM_JOSE_DANIEL_RODRIGUEZ_MUNCA.pdf
dc.relationSabatini, A. M. (2011). Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing. Sensors (Basel, Switzerland), 11(2), 1489-1525. doi:10.3390/s110201489
dc.relationSanner, W. H., & O'Halloran, W. D. (2000). The biomechanics, etiology, and treatment of cycling injuries. Journal of the American Podiatric Medical Association, 90(7), 354-376. doi:10.7547/87507315-90-7-354
dc.relationSensor inercial o Sensor IMU Ingeniería Mecafenix. (2018, 23 julio). [Ilustración]. https://www.ingmecafenix.com/automatizacion/sensores/sensor-inercial/
dc.relationSTT Systems. (2018). Cycling 3DMA [Ilustración]. https://www.stt-systems.com/motion analysis/3d-optical-motion-capture/cycling-3dma/?cn-reloaded=1
dc.relationSwart, J., & Holliday, W. (2019). Cycling biomechanics optimization-the (R) evolution of bicycle fitting. Current Sports Medicine Reports, 18(12), 490-496. doi:10.1249/JSR.0000000000000665
dc.relationTan, H., Wilson, A. M., & Lowe, J. (2008). Measurement of stride parameters using a wearable GPS and inertial measurement unit. Journal of Biomechanics, 41(7), 1398 1406. doi:10.1016/j.jbiomech.2008.02.021
dc.relationTheurel, J., Crepin, M., Foissac, M., & Temprado, J. J. (2012). Effects of different pedalling techniques on muscle fatigue and mechanical efficiency during prolonged cycling. Scandinavian Journal of Medicine & Science in Sports, 22(6), 714-721. doi:10.1111/j.1600-0838.2011.01313.x
dc.relationThe I2C Bus Specification (version 2.1, January 2000) URL http://www.semiconductors.philips.com/acrobat/literature/9398/39340011.pdf
dc.relationToapanta, C., Villafuerte, J., & Cruz, P. J. (Oct 2018). 3DoF multi-rotor experimental testbed for teaching control systems. Paper presented at the 1-6. doi:10.1109/ETCM.2018.8580337 Retrieved from https://ieeexplore.ieee.org/document/8580337
dc.relationTownsend, K. (2015). Adafruit BNO055 absolute orientation sensor. Retrieved from https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor/overview
dc.relationWanich, T., Hodgkins, C., Columbier, J., Muraski, E., & Kennedy, J. G. (2007). Cycling injuries of the lower extremity. The Journal of the American Academy of Orthopaedic Surgeons, 15(12), 748-756. doi:10.5435/00124635-200712000-00008
dc.relationWiva. Inertial system for cycling performance analysis. (2020, mayo 7). Recuperado de http://www.e-wiva.com/wiva_cycle.html
dc.relationXu, J. Y. X. Nan, V. Ebken, Y. Wang, G. J. Pottie, & W. J. Kaiser. (2015). Integrated inertial sensors and mobile computing for real-time cycling performance guidance via pedaling profile classification doi:10.1109/JBHI.2014.2322871
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleDiseño de un sistema para el registro de la posición de los ciclistas de ruta usando sensores inerciales para potenciar el gesto deportivo


Este ítem pertenece a la siguiente institución