dc.contributor | Solarte David, Víctor Alfonso | |
dc.contributor | Becerra Bayona, Silvia Milena | |
dc.contributor | Solarte David, Víctor Alfonso [0001329391] | |
dc.contributor | Becerra Bayona, Silvia Milena [0001568861] | |
dc.contributor | Becerra Bayona, Silvia Milena [5wr21EQAAAAJ] | |
dc.contributor | Solarte David, Víctor Alfonso [0000-0002-9856-1484] | |
dc.contributor | Becerra Bayona, Silvia Milena [0000-0002-4499-5885] | |
dc.contributor | Becerra Bayona, Silvia Milena [36522328100] | |
dc.contributor | Solarte David, Víctor Alfonso [Victor-Solarte-David] | |
dc.contributor | Becerra Bayona, Silvia Milena [Silvia-Becerra-Bayona] | |
dc.contributor | Solarte David, Víctor Alfonso [víctor-alfonso-solarte-david] | |
dc.contributor | Becerra Bayona, Silvia Milena [silvia-milena-becerra-bayona] | |
dc.creator | Rojas Cárdenas, Luis David | |
dc.date.accessioned | 2023-02-20T14:22:21Z | |
dc.date.accessioned | 2023-06-12T20:23:42Z | |
dc.date.available | 2023-02-20T14:22:21Z | |
dc.date.available | 2023-06-12T20:23:42Z | |
dc.date.created | 2023-02-20T14:22:21Z | |
dc.date.issued | 2022 | |
dc.identifier | http://hdl.handle.net/20.500.12749/19050 | |
dc.identifier | instname:Universidad Autónoma de Bucaramanga - UNAB | |
dc.identifier | reponame:Repositorio Institucional UNAB | |
dc.identifier | repourl:https://repository.unab.edu.co | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6662524 | |
dc.description.abstract | La diabetes mellitus es una enfermedad que en la actualidad se considera un problema de salud pública y se estima que afecte a más de 700 millones de personas adultas en los años venideros. Una de sus principales complicaciones son las úlceras crónicas de pie diabético (UCPD), lesiones cutáneas que en la actualidad no tienen tratamientos 100% efectivos y que afectan de manera significativa la calidad de vida de quienes la padecen, lo que ha incrementado la necesidad de encontrar tratamientos que mejoren el proceso de cicatrización de este tipo de heridas. Por lo anterior, en el presente proyecto se ha sido utilizado piel de tilapia roja, un desecho de la industria acuícola, para extraer colágeno y con este elaborar hidrogeles, los cuales se reticularon con plasma pobre en plaquetas (PPP), una fracción de la sangre que no ha sido frecuentemente utilizada para la investigación. El proceso de extracción de colágeno ácido soluble permitió obtener un rendimiento en base seca cercano al 40%, y a partir de este, fabricar los hidrogeles y reticularlos con el PPP, obteniendo una dinámica adecuada en cuanto a la liberación de proteínas. Estos hidrogeles se sometieron a diferentes ensayos con el fin de determinar sus propiedades mecánicas y físicas, encontrando módulos de compresión similares a los de las capas
internas de la piel, así como una capacidad de hinchamiento óptima, lo que les permitiría entregar la humedad necesaria a la herida durante el proceso de cicatrización. Finalmente, a partir de pruebas in vitro, se determinó que el lixiviado producido por los hidrogeles mantiene la viabilidad celular en un periodo de 48 horas, al permitir la proliferación de fibroblastos de la línea celular HT1080. Estos resultados indican que los hidrogeles fabricados en el presente estudio podrían ser una alternativa terapéutica para el tratamiento de las UCPD. | |
dc.language | spa | |
dc.publisher | Universidad Autónoma de Bucaramanga UNAB | |
dc.publisher | Facultad Ingeniería | |
dc.publisher | Pregrado Ingeniería Biomédica | |
dc.relation | Afonso, A. C., Oliveira, D., Saavedra, M. J., Borges, A., & Simões, M. (2021). Biofilms in Diabetic Foot Ulcers: Impact, Risk Factors and Control Strategies. International Journal of Molecular Sciences, 22(15), 25. https://doi.org/10.3390/ijms22158278 | |
dc.relation | Aguilar Hurtado, M. (2020). Plan Territorial de Salud “Santander por el mundo.” 433–553. http://santandercompetitivo.org/media/31e7ab1122d0b7c84b7dde25e69879dd863b0a59.pdf | |
dc.relation | Antoine, E. E., Vlachos, P. P., & Rylander, M. N. (2015). Tunable collagen I hydrogels for engineered physiological tissue micro-environments. PLoS ONE, 10(3). https://doi.org/10.1371/journal.pone.0122500 | |
dc.relation | Aumiller, W. D., & Dollahite, H. A. (2015). Pathogenesis and management of diabetic foot ulcers. Journal of the American Academy of Physician Assistants, 28(5), 28–34. https://doi.org/10.1097/01.JAA.0000464276.44117.b1 | |
dc.relation | Bader, D. L., & Bowker, P. (1983). Mechanical characteristics of skin and underlying tissues in vivo. Biomaterials, 4(4), 305–308. https://doi.org/10.1016/0142-9612(83)90033-9 | |
dc.relation | Bandyk, D. F. (2018). The diabetic foot: Pathophysiology, evaluation, and treatment. Seminars in Vascular Surgery, 31(2–4), 43–48. https://doi.org/10.1053/j.semvascsurg.2019.02.001 | |
dc.relation | Carretero Villanueva, N. C. (2014). Desarrollo de un hidrogel como soporte para el cultivo de células osteoprogenitoras [Universidad El Bosque]. http://hdl.handle.net/20.500.12495/5241 | |
dc.relation | Catoira, M. C., Fusaro, L., Di Francesco, D., Ramella, M., & Boccafoschi, F. (2019). Overview of natural hydrogels for regenerative medicine applications. Journal of Materials Science: 85 Materials in Medicine, 30(10). https://doi.org/10.1007/s10856-019-6318-7 | |
dc.relation | Chellini, F., Tani, A., Zecchi-Orlandini, S., & Sassoli, C. (2019). Influence of platelet-rich and platelet-poor plasma on endogenous mechanisms of skeletal muscle repair/regeneration. International Journal of Molecular Sciences, 20(3). https://doi.org/10.3390/ijms20030683 | |
dc.relation | Chen, J., Li, L., Yi, R., Xu, N., Gao, R., & Hong, B. (2016). Extraction and characterization of acid-soluble collagen from scales and skin of tilapia (Oreochromis niloticus). LWT - Food Science and Technology, 66, 453–459. https://doi.org/10.1016/j.lwt.2015.10.070 | |
dc.relation | Cheng, M., Wang, H., Yoshida, R., & Murray, M. M. (2010). Platelets and Plasma Proteins Are Both Required to Stimulate Collagen Gene Expression by Anterior Cruciate Ligament Cells in Three-Dimensional Culture. Tissue Engineering Part A, 16(5), 1479–1489. https://doi.org/10.1089/ten.tea.2009.0199 | |
dc.relation | Chiang, N., Rodda, O. A., Kang, A., Sleigh, J., & Vasudevan, T. (2018). Clinical Evaluation of Portable Wound Volumetric Measurement Devices. Advances in Skin and Wound Care, 31(8), 374–380. https://doi.org/10.1097/01.ASW.0000540072.52782.24 | |
dc.relation | Chisini, L. A., Karam, S. A., Noronha, T. G., Sartori, L. R. M., Martin, A. S. S., Demarco, F. F., & Conde, M. C. M. (2017). Platelet-Poor Plasma as a Supplement for Fibroblasts Cultured in Platelet-Rich Fibrin. Acta Stomatologica Croatica, 51(2), 133–140. https://doi.org/10.15644/asc51/2/6 | |
dc.relation | Chuang, C. H., Lin, R. Z., Melero-Martin, J. M., & Chen, Y. C. (2018). Comparison of covalently and physically cross-linked collagen hydrogels on mediating vascular network formation for engineering adipose tissue. Artificial Cells, Nanomedicine and Biotechnology, 46(sup3), S434–S447. https://doi.org/10.1080/21691401.2018.1499660 | |
dc.relation | Chung, E., Rytlewski, J. A., Merchant, A. G., Dhada, K. S., Lewis, E. W., & Suggs, L. J. (2015). Fibrin-based 3D matrices induce angiogenic behavior of adipose-derived stem cells. Acta Biomaterialia, 17(January), 78–88. https://doi.org/10.1016/j.actbio.2015.01.012 | |
dc.relation | Cruz, A. (2003). Biología de la cicatrización. Revista Asociación Colombiana de Dermatología y Cirugía Dermatológica, 11(1), 45–62. https://revista.asocolderma.org.co/index.php/asocolderma/article/view/623/577 | |
dc.relation | Dinescu, S., Albu Kaya, M., Chitoiu, L., Ignat, S., Kaya, D. A., & Costache, M. (2019). Collagen-Based Hydrogels and Their Applications for Tissue Engineering and Regenerative Medicine. January, 1643–1664. https://doi.org/10.1007/978-3-319-77830- 3_54 | |
dc.relation | Diridollou, S., Vabre, V., Berson, M., Vaillant, L., Black, D., Lagarde, J. M., Grégoire, J. M., Gall, Y., & Patat, F. (2001). Skin ageing: Changes of physical properties of human skin in vivo. International Journal of Cosmetic Science, 23(6), 353–362. https://doi.org/10.1046/j.0412-5463.2001.00105.x | |
dc.relation | Egorikhina, M. N., Aleynik, D. Y., Rubtsova, Y. P., Levin, G. Y., Charykova, I. N., Semenycheva, L. L., Bugrova, M. L., & Zakharychev, E. A. (2019). Hydrogel scaffolds based on blood plasma cryoprecipitate and collagen derived from various sources: Structural, mechanical and biological characteristics. Bioactive Materials, 4(June 2019), 334–345. https://doi.org/10.1016/j.bioactmat.2019.10.003 | |
dc.relation | Falanga, V. (2020). Bioengineered skin constructs. In Principles of Tissue Engineering. INC. https://doi.org/10.1016/B978-0-12-818422-6.00073-3 | |
dc.relation | Fang, S. (2018). Development of collagen-based scaffolds for differentiation of induced 87 pluripotent stem cells [Binghamton University]. https://orb.binghamton.edu/dissertation_and_theses/87 | |
dc.relation | Fleck, C. A., & Simman, R. (2010). Modern collagen wound dressings: Function and purpose. Journal of the American College of Certified Wound Specialists, 2(3), 50–54. https://doi.org/10.1016/j.jcws.2010.12.003 | |
dc.relation | Ge, B., Wang, H., Li, J., Liu, H., Yin, Y., Zhang, N., & Qin, S. (2020). Comprehensive Assessment of Nile Tilapia Skin (Oreochromis niloticus) Collagen Hydrogels for Wound Dressings. Marine Drugs, 18(4), 178. https://doi.org/10.3390/md18040178 | |
dc.relation | Geerligs, M. (2010). Skin layer mechanics. In Skin layer mechanics (Issue 2010). | |
dc.relation | Grover, C. N., Cameron, R. E., & Best, S. M. (2012). Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 10, 62–74. https://doi.org/10.1016/j.jmbbm.2012.02.028 | |
dc.relation | Gu, L., Shan, T., Ma, Y. xuan, Tay, F. R., & Niu, L. (2019). Novel Biomedical Applications of Crosslinked Collagen. Trends in Biotechnology, 37(5), 464–491. https://doi.org/10.1016/j.tibtech.2018.10.007 | |
dc.relation | Holmes, C., Wrobel, J. S., Maceachern, M. P., & Boles, B. R. (2013). Collagen-based wound dressings for the treatment of diabetes-related foot ulcers: A systematic review. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 6, 17–29. https://doi.org/10.2147/DMSO.S36024 | |
dc.relation | Houdek, M. T., Wyles, C. C., Stalboerger, P. G., Terzic, A., Behfar, A., & Moran, S. L. (2016). 88 Collagen and Fractionated Platelet-Rich Plasma Scaffold for Dermal Regeneration. Plastic and Reconstructive Surgery, 137(5), 1498–1506. https://doi.org/10.1097/PRS.0000000000002094 | |
dc.relation | Hyland, J. C. (2007). Skin and connective tissue disorders. Molecular Pathology in Clinical Practice, Md, 191–203. https://doi.org/10.1007/978-0-387-33227-7_16 | |
dc.relation | International Diabetes Federation. (2021). IDF Diabetes Atlas 2021 (10th ed.). | |
dc.relation | Isaza López, J. A. (2019). Mechanical Behavior of Skin in Function of its Layers Thickness. Universidad Nacional de Colombia. | |
dc.relation | Jafari, H., Lista, A., Siekapen, M. M., Ghaffari-Bohlouli, P., Nie, L., Alimoradi, H., & Shavandi, A. (2020). Fish collagen: Extraction, characterization, and applications for biomaterials engineering. Polymers, 12(10), 1–37. https://doi.org/10.3390/polym12102230 | |
dc.relation | Joodaki, H., & Panzer, M. B. (2018). Skin mechanical properties and modeling: A review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 232(4), 323–343. https://doi.org/10.1177/0954411918759801 | |
dc.relation | Kalra, A., & Lowe, A. (2016). An Overview of Factors Affecting the Skins Youngs Modulus. Journal of Aging Science, 4(2). https://doi.org/10.4172/2329-8847.1000156 | |
dc.relation | Karami, A., Tebyanian, H., Sayyad Soufdoost, R., Motavallian, E., Barkhordari, A., & Nourani, M. R. (2019). Extraction and Characterization of Collagen with Cost-Effective Method from Human Placenta for Biomedical Applications. World Journal of Plastic Surgery, 8(3), 352–358. https://doi.org/10.29252/wjps.8.3.352 | |
dc.relation | Khan, Y., M. Khan, M., & Raza Farooqui, M. (2017). Diabetic foot ulcers: a review of current 89 management. International Journal of Research in Medical Sciences, 5(11), 4683. https://doi.org/10.18203/2320-6012.ijrms20174916 | |
dc.relation | Kiran, A. S. K., & Ramakrishna, S. (2021). Biomaterials: Basic principles. An Introduction to Biomaterials Science and Engineering, 82–93. https://doi.org/10.1142/9789811228186_0004 | |
dc.relation | Li, J., Wang, M., Qiao, Y., Tian, Y., Liu, J., Qin, S., & Wu, W. (2018). Extraction and characterization of type I collagen from skin of tilapia (Oreochromis niloticus) and its potential application in biomedical scaffold material for tissue engineering. Process Biochemistry, 74, 156–163. https://doi.org/10.1016/j.procbio.2018.07.009 | |
dc.relation | Lim, J. Z. M., Ng, N. S. L., & Thomas, C. (2017). Prevention and treatment of diabetic foot ulcers. Journal of the Royal Society of Medicine, 110(3), 104–109. https://doi.org/10.1177/0141076816688346 | |
dc.relation | Liu, C. Y., Matsusaki, M., & Akashi, M. (2015). Cell effects on the formation of collagen triple helix fibers inside collagen gels or on cell surfaces. Polymer Journal, 47(5), 391–399. https://doi.org/10.1038/pj.2015.2 | |
dc.relation | Martínez-Correa, E., Osorio-Delgado, M. A., Henao-Tamayo, L. J., & Castro-Herazo, C. I. (2020). Systemic classification of wound dressings: A review. Revista Mexicana de Ingenieria Biomedica, 41(1), 5–28. https://doi.org/10.17488/RMIB.41.1.1 | |
dc.relation | Meisenberg, G., & Simmons, W. (2018). Principles of Medical Biochemistry (4th ed.). Elsevier Inc. | |
dc.relation | Meyer, M. (2019). Processing of collagen based biomaterials and the resulting materials 90 properties. BioMedical Engineering Online, 18(1), 1–74. https://doi.org/10.1186/s12938- 019-0647-0 | |
dc.relation | MinAgricultura - SIOC. (2020). Cadena de la Acuicultura 3°Trimestre 2020. https://sioc.minagricultura.gov.co/Acuicultura/Documentos/2020-09-30 Cifras Sectoriales.pdf | |
dc.relation | Misiura, M., Guszczyn, T., Oscilowska, I., Baszanowska, W., Palka, J., & Miltyk, W. (2021). Platelet-rich plasma promotes the proliferation of human keratinocytes via a progression of the cell cycle. A role of prolidase. International Journal of Molecular Sciences, 22(2), 1–14. https://doi.org/10.3390/ijms22020936 | |
dc.relation | Monteiro-Soares, M., Boyko, E. J., Jeffcoate, W., Mills, J. L., Russell, D., Morbach, S., & Game, F. (2020). Diabetic foot ulcer classifications: A critical review. Diabetes/Metabolism Research and Reviews, 36(S1), 1–16. https://doi.org/10.1002/dmrr.3272 | |
dc.relation | Montero, A., Quílez, C., Valencia, L., Girón, P., Jorcano, J. L., & Velasco, D. (2021). Effect of fibrin concentration on the in vitro production of dermo‐epidermal equivalents. International Journal of Molecular Sciences, 22(13). https://doi.org/10.3390/ijms22136746 | |
dc.relation | Natesan, S., Stone, R., Coronado, R. E., Wrice, N. L., Kowalczewski, A. C., Zamora, D. O., & Christy, R. J. (2019). PEGylated Platelet-Free Blood Plasma-Based Hydrogels for FullThickness Wound Regeneration. Advances in Wound Care, 8(7), 323–340. https://doi.org/10.1089/wound.2018.0844 | |
dc.relation | Nguyen, T. U., Watkins, K. E., & Kishore, V. (2019). Photochemically crosslinked cell-laden methacrylated collagen hydrogels with high cell viability and functionality. Journal of Biomedical Materials Research - Part A, September 2018, 1541–1550. 91 https://doi.org/10.1002/jbm.a.36668 | |
dc.relation | Osidak, E. O., Kalabusheva, E. P., Alpeeva, E. V., Belousov, S. I., Krasheninnikov, S. V., Grigoriev, T. E., Domogatsky, S. P., Vorotelyak, E. A., & Chermnykh, E. S. (2021). Concentrated collagen hydrogels: A new approach for developing artificial tissues. Materialia, 20(September), 101217. https://doi.org/10.1016/j.mtla.2021.101217 | |
dc.relation | Owczarzy, A., Kurasiński, R., Kulig, K., Rogóż, W., Szkudlarek, A., & Maciążek-Jurczyk, M. (2020). Collagen-structure, properties and application. Engineering of Biomaterials, 156, 17–23. https://doi.org/10.34821/eng.biomat.156.2020.17-23 | |
dc.relation | Pankajakshan, D., Voytik-Harbin, S. L., Nör, J. E., & Bottino, M. C. (2020). Injectable Highly Tunable Oligomeric Collagen Matrices for Dental Tissue Regeneration. ACS Applied Bio Materials, 3(2), 859–868. https://doi.org/10.1021/acsabm.9b00944 | |
dc.relation | Pawlaczyk, M., Lelonkiewicz, M., & Wieczorowski, M. (2013). Age-dependent biomechanical properties of the skin. Postepy Dermatologii i Alergologii, 30(5), 302–306. https://doi.org/10.5114/pdia.2013.38359 | |
dc.relation | Peppas, N. A., Slaughter, B. V., & Kanzelberger, M. A. (2012). Hydrogels. In Polymer Science: A Comprehensive Reference (Vol. 9, pp. 385–395). https://doi.org/10.1016/B978-0-444- 53349-4.00226-0 | |
dc.relation | Pereira C., N., Suh, H. P., & Hong, J. P. (JP). (2018). Úlceras Del Pie Diabético: Importancia Del Manejo Multidisciplinario Y Salvataje Microquirúrgico De La Extremidad. Revista Chilena de Cirugía, 70(6), 535–543. https://doi.org/10.4067/s0718-40262018000600535 | |
dc.relation | Quintero, J., & Zapata, J. E. (2017). Optimización de la Extracción del Colágeno Soluble en 92 Ácido de Subproductos de Tilapia Roja (Oreochromis spp) mediante un Diseño de Superficie de Respuesta. Informacion Tecnologica, 28(1), 109–120. https://doi.org/10.4067/S0718-07642017000100011 | |
dc.relation | Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (2013). Biomaterials Science: An Evolving, Multidisciplinary Endeavor. Biomaterials Science: An Introduction to Materials: Third Edition, xxv–xxxix. https://doi.org/10.1016/B978-0-08-087780-8.00153-4 | |
dc.relation | Ramírez Rojas, D., Ramírez Sánchez, P., Santos Soto, J. (2022). Evaluación de las propiedades mecánicas de hidrogeles a base de colágeno de piel de tilapia con potencial uso en el tratamiento de quemaduras de segundo grado [Tesis de pregrado]. Universidad Autónoma de Bucaramanga. | |
dc.relation | Rosendo Fernandez, J. and Pérez Zarauza, M., 2016. Guía Práctica de Úlceras de Pie Diabético. Santiago de Compostela: Programa Úlceras Fóra | |
dc.relation | Sáenz Ramírez, A. (2004). Biomateriales. Tecnología En Marcha, 17(1), 34–45. | |
dc.relation | Sarrigiannidis, S. O., Rey, J. M., Dobre, O., González-García, C., Dalby, M. J., & SalmeronSanchez, M. (2021). A tough act to follow: collagen hydrogel modifications to improve mechanical and growth factor loading capabilities. Materials Today Bio, 10(January). https://doi.org/10.1016/j.mtbio.2021.100098 | |
dc.relation | Schneider-Barthold, C., Baganz, S., Wilhelmi, M., Scheper, T., & Pepelanova, I. (2016). Hydrogels based on collagen and fibrin - Frontiers and applications. BioNanoMaterials, 17(1–2), 3–12. https://doi.org/10.1515/bnm-2015-0025 | |
dc.relation | Serrano Gaona, J. C. (2011). Estandarización de un proceso de extracción de colágeno a partir 93 de los residuos de fileteo de tilapia (Oreochromis sp) y cachama (Piaractus brachypomus). 85. http://www.bdigital.unal.edu.co/4880/ | |
dc.relation | Shoulders, M. D., & Raines, R. T. (2009). Collagen structure and stability. Annual Review of Biochemistry, 78, 929–958. https://doi.org/10.1146/annurev.biochem.77.032207.120833 | |
dc.relation | Silvipriya, K. S., Krishna Kumar, K., Bhat, A. R., Dinesh Kumar, B., John, A., & Lakshmanan, P. (2015). Collagen: Animal sources and biomedical application. Journal of Applied Pharmaceutical Science, 5(3), 123–127. https://doi.org/10.7324/JAPS.2015.50322 | |
dc.relation | Snyder, R. J., & Hanft, J. R. (2009). Diabetic foot ulcers--effects on QOL, costs, and mortality and the role of standard wound care and advanced-care therapies. Ostomy/Wound Management, 55(11), 28–38. http://www.ncbi.nlm.nih.gov/pubmed/19934461 | |
dc.relation | Sobczak-Kupiec, A., Drabczyk, A., Florkiewicz, W., Głąb, M., Kudłacik-Kramarczyk, S., Słota, D., Tomala, A., & Tyliszczak, B. (2021). Review of the applications of biomedical compositions containing hydroxyapatite and collagen modified by bioactive components. Materials, 14(9). https://doi.org/10.3390/ma14092096 | |
dc.relation | Taguchi, T., & Tanaka, J. (2002). Swelling behavior of hyaluronic acid and type II collagen hydrogels prepared by using conventional crosslinking and subsequent additional polymer interactions. Journal of Biomaterials Science, Polymer Edition, 13(1), 43–52. https://doi.org/10.1163/156856202753525927 | |
dc.relation | Techatanawat, S., Surarit, R., Suddhasthira, T., & Khovidhunkit, S. O. P. (2011). Type I collagen extracted from rat-tail and bovine Achilles tendon for dental application: A comparative study. Asian Biomedicine, 5(6), 787–798. https://doi.org/10.5372/1905-7415.0506.111 | |
dc.relation | Tian, H., Ren, Z., Shi, L., Hao, G., Chen, J., & Weng, W. (2021). Self-assembly characterization of tilapia skin collagen in simulated body fluid with different salt concentrations. Process Biochemistry, 108(June), 153–160. https://doi.org/10.1016/j.procbio.2021.06.013 | |
dc.relation | Vallet-Regí, M. (2022). Evolution of Biomaterials. Frontiers in Materials, 9(March), 1–5. https://doi.org/10.3389/fmats.2022.864016 | |
dc.relation | Willits, R. K., & Skornia, S. L. (2004). Effect of collagen gel stiffness on neurite extension. Journal of Biomaterials Science, Polymer Edition, 15(12), 1521–1531. https://doi.org/10.1163/1568562042459698 | |
dc.relation | World Health Organization. (2021). Diabetes. https://www.who.int/es/news-room/factsheets/detail/diabetes | |
dc.relation | Wu, M., Cronin, K., & Crane, J. S. (2022). Biochemistry, Collagen Synthesis. In StatPearls. http://www.ncbi.nlm.nih.gov/pubmed/29939531 | |
dc.relation | Zeng, S. kui, Zhang, C. hua, Lin, H., Yang, P., Hong, P. zhi, & Jiang, Z. (2009). Isolation and characterisation of acid-solubilised collagen from the skin of Nile tilapia (Oreochromis niloticus). Food Chemistry, 116(4), 879–883. https://doi.org/10.1016/j.foodchem.2009.03.038 | |
dc.relation | Zhang, J., Zhang, J., Zhang, N., Li, T., Zhou, X., Jia, J., Liang, Y., Sun, X., & Chen, H. (2020). The Effects of Platelet-Rich and Platelet-Poor Plasma on Biological Characteristics of BMMSCs in Vitro. Analytical Cellular Pathology, 2020. https://doi.org/10.1155/2020/8546231 | |
dc.relation | Zhou, C., Sheng, C., Chen, J., Liang, Y., Liu, Q., Li, P., Huang, X., & Liu, B. (2022). Gradual hydrogel degradation for programable repairing full-thickness skin defect wound. Chemical 95 Engineering Journal, 450(P3), 138200. https://doi.org/10.1016/j.cej.2022.138200Afonso, A. C., Oliveira, D., Saavedra, M. J., Borges, A., & Simões, M. (2021). Biofilms in Diabetic Foot Ulcers: Impact, Risk Factors and Control Strategies. International Journal of Molecular Sciences, 22(15), 25. https://doi.org/10.3390/ijms22158278 | |
dc.relation | https://apolo.unab.edu.co/en/persons/v%C3%ADctor-alfonso-solarte-david | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | |
dc.rights | Abierto (Texto Completo) | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | |
dc.title | Desarrollo de un apósito tipo hidrogel de plasma pobre en plaquetas y colágeno extraído de piel de tilapia con potencial uso para el tratamiento de úlceras crónicas de pie diabético | |